ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (10)
  • Phylogeny  (10)
Collection
  • Articles  (10)
  • 1
    Publication Date: 2001-07-07
    Description: To illuminate the function and evolutionary history of both genomes, we sequenced mouse DNA related to human chromosome 19. Comparative sequence alignments yielded confirmatory evidence for hypothetical genes and identified exons, regulatory elements, and candidate genes that were missed by other predictive methods. Chromosome-wide comparisons revealed a difference between single-copy HSA19 genes, which are overwhelmingly conserved in mouse, and genes residing in tandem familial clusters, which differ extensively in number, coding capacity, and organization between the two species. Finally, we sequenced breakpoints of all 15 evolutionary rearrangements, providing a view of the forces that drive chromosome evolution in mammals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dehal, P -- Predki, P -- Olsen, A S -- Kobayashi, A -- Folta, P -- Lucas, S -- Land, M -- Terry, A -- Ecale Zhou, C L -- Rash, S -- Zhang, Q -- Gordon, L -- Kim, J -- Elkin, C -- Pollard, M J -- Richardson, P -- Rokhsar, D -- Uberbacher, E -- Hawkins, T -- Branscomb, E -- Stubbs, L -- New York, N.Y. -- Science. 2001 Jul 6;293(5527):104-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DOE Joint Genome Institute, Walnut Creek, CA 94598, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11441184" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosome Breakage/genetics ; Chromosomes, Human, Pair 19/*genetics ; Conserved Sequence/*genetics ; Contig Mapping ; DNA, Satellite/genetics ; *Evolution, Molecular ; Exons/genetics ; Expressed Sequence Tags ; Gene Dosage ; Gene Order/genetics ; Genetic Linkage/genetics ; Genome ; Humans ; Long Interspersed Nucleotide Elements/genetics ; Mice ; Multigene Family/genetics ; Open Reading Frames/genetics ; Phylogeny ; Sequence Alignment ; Sequence Analysis, DNA ; Short Interspersed Nucleotide Elements/genetics ; Terminal Repeat Sequences/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-07-29
    Description: Comparative genomics of 45 epidemiologically varied variola virus isolates from the past 30 years of the smallpox era indicate low sequence diversity, suggesting that there is probably little difference in the isolates' functional gene content. Phylogenetic clustering inferred three clades coincident with their geographical origin and case-fatality rate; the latter implicated putative proteins that mediate viral virulence differences. Analysis of the viral linear DNA genome suggests that its evolution involved direct descent and DNA end-region recombination events. Knowing the sequences will help understand the viral proteome and improve diagnostic test precision, therapeutics, and systems for their assessment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Esposito, Joseph J -- Sammons, Scott A -- Frace, A Michael -- Osborne, John D -- Olsen-Rasmussen, Melissa -- Zhang, Ming -- Govil, Dhwani -- Damon, Inger K -- Kline, Richard -- Laker, Miriam -- Li, Yu -- Smith, Geoffrey L -- Meyer, Hermann -- Leduc, James W -- Wohlhueter, Robert M -- G0501257/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2006 Aug 11;313(5788):807-12. Epub 2006 Jul 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Preparedness, Detection, and Control of Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA. jesposito@cdc.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16873609" target="_blank"〉PubMed〈/a〉
    Keywords: DNA, Viral/*genetics ; Disease Outbreaks ; *Evolution, Molecular ; Gene Deletion ; *Genetic Variation ; *Genome, Viral ; Genomics ; Humans ; Molecular Sequence Data ; Open Reading Frames ; Phylogeny ; Proteome/analysis/genetics ; Recombination, Genetic ; Sequence Analysis, DNA ; Smallpox/epidemiology/mortality/*virology ; Variola virus/classification/*genetics/isolation & purification/pathogenicity ; Viral Proteins/chemistry/genetics ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-07-19
    Description: The allohexaploid bread wheat genome consists of three closely related subgenomes (A, B, and D), but a clear understanding of their phylogenetic history has been lacking. We used genome assemblies of bread wheat and five diploid relatives to analyze genome-wide samples of gene trees, as well as to estimate evolutionary relatedness and divergence times. We show that the A and B genomes diverged from a common ancestor ~7 million years ago and that these genomes gave rise to the D genome through homoploid hybrid speciation 1 to 2 million years later. Our findings imply that the present-day bread wheat genome is a product of multiple rounds of hybrid speciation (homoploid and polyploid) and lay the foundation for a new framework for understanding the wheat genome as a multilevel phylogenetic mosaic.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marcussen, Thomas -- Sandve, Simen R -- Heier, Lise -- Spannagl, Manuel -- Pfeifer, Matthias -- International Wheat Genome Sequencing Consortium -- Jakobsen, Kjetill S -- Wulff, Brande B H -- Steuernagel, Burkhard -- Mayer, Klaus F X -- Olsen, Odd-Arne -- New York, N.Y. -- Science. 2014 Jul 18;345(6194):1250092. doi: 10.1126/science.1250092.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Sciences, Norwegian University of Life Sciences, 1432 As, Norway. ; Department of Plant Sciences, Norwegian University of Life Sciences, 1432 As, Norway. simen.sandve@nmbu.no. ; Stromsveien 78 B, 0663 Oslo, Norway. ; Plant Genome and Systems Biology, Helmholtz Center Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany. ; Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0316 Oslo, Norway. ; The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25035499" target="_blank"〉PubMed〈/a〉
    Keywords: *Bread ; *Evolution, Molecular ; Genes, Plant ; *Genome, Plant ; *Hybridization, Genetic ; Phylogeny ; Polyploidy ; Triticum/classification/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2003-05-06
    Description: In March 2003, a novel coronavirus (SARS-CoV) was discovered in association with cases of severe acute respiratory syndrome (SARS). The sequence of the complete genome of SARS-CoV was determined, and the initial characterization of the viral genome is presented in this report. The genome of SARS-CoV is 29,727 nucleotides in length and has 11 open reading frames, and its genome organization is similar to that of other coronaviruses. Phylogenetic analyses and sequence comparisons showed that SARS-CoV is not closely related to any of the previously characterized coronaviruses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rota, Paul A -- Oberste, M Steven -- Monroe, Stephan S -- Nix, W Allan -- Campagnoli, Ray -- Icenogle, Joseph P -- Penaranda, Silvia -- Bankamp, Bettina -- Maher, Kaija -- Chen, Min-Hsin -- Tong, Suxiong -- Tamin, Azaibi -- Lowe, Luis -- Frace, Michael -- DeRisi, Joseph L -- Chen, Qi -- Wang, David -- Erdman, Dean D -- Peret, Teresa C T -- Burns, Cara -- Ksiazek, Thomas G -- Rollin, Pierre E -- Sanchez, Anthony -- Liffick, Stephanie -- Holloway, Brian -- Limor, Josef -- McCaustland, Karen -- Olsen-Rasmussen, Melissa -- Fouchier, Ron -- Gunther, Stephan -- Osterhaus, Albert D M E -- Drosten, Christian -- Pallansch, Mark A -- Anderson, Larry J -- Bellini, William J -- New York, N.Y. -- Science. 2003 May 30;300(5624):1394-9. Epub 2003 May 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA. prota@cdc.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12730500" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Conserved Sequence ; Coronavirus/classification/genetics ; DNA, Complementary ; Endopeptidases/chemistry/genetics ; *Genome, Viral ; Humans ; Membrane Glycoproteins/chemistry/genetics ; Molecular Sequence Data ; Nucleocapsid Proteins/chemistry/genetics ; Open Reading Frames ; Phylogeny ; Polyproteins/chemistry/genetics ; RNA Replicase/chemistry/genetics ; RNA, Messenger/genetics/metabolism ; RNA, Viral/*genetics ; Regulatory Sequences, Nucleic Acid ; SARS Virus/chemistry/classification/*genetics/isolation & purification ; Sequence Analysis, DNA ; Severe Acute Respiratory Syndrome/virology ; Spike Glycoprotein, Coronavirus ; Transcription, Genetic ; Viral Envelope Proteins/chemistry/genetics ; Viral Matrix Proteins/chemistry/genetics ; Viral Proteins/chemistry/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-18
    Description: The shift to self-pollination is one of the most prevalent evolutionary transitions in flowering plants. In the selfing plant Arabidopsis thaliana, pseudogenes at the SCR and SRK self-incompatibility loci are believed to underlie the evolution of self-fertilization. Positive directional selection has driven the evolutionary fixation of pseudogene alleles of SCR, leading to substantially reduced nucleotide variation. Coalescent simulations indicate that this adaptive event may have occurred very recently and is possibly associated with the post-Pleistocene expansion of A. thaliana from glacial refugia. This suggests that ancillary morphological innovations associated with self-pollination can evolve rapidly after the inactivation of the self-incompatibility response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shimizu, Kentaro K -- Cork, Jennifer M -- Caicedo, Ana L -- Mays, Charlotte A -- Moore, Richard C -- Olsen, Kenneth M -- Ruzsa, Stephanie -- Coop, Graham -- Bustamante, Carlos D -- Awadalla, Philip -- Purugganan, Michael D -- New York, N.Y. -- Science. 2004 Dec 17;306(5704):2081-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, North Carolina State University, Box 7614, Raleigh, NC 27695, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15604405" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Arabidopsis/*genetics/*physiology ; Biological Evolution ; Chromosome Mapping ; Climate ; DNA, Intergenic ; *Genes, Plant ; Genetic Variation ; Genome, Plant ; Geography ; Haplotypes ; Likelihood Functions ; Molecular Sequence Data ; Open Reading Frames ; Phylogeny ; Plant Proteins ; Pollen ; Polymorphism, Genetic ; Polymorphism, Single Nucleotide ; Protein Kinases/*genetics/physiology ; *Pseudogenes ; Recombination, Genetic ; *Selection, Genetic ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2005-09-28
    Description: Molecular and antigenic analyses of three influenza viruses isolated from outbreaks of severe respiratory disease in racing greyhounds revealed that they are closely related to H3N8 equine influenza virus. Phylogenetic analysis indicated that the canine influenza virus genomes form a monophyletic group, consistent with a single interspecies virus transfer. Molecular changes in the hemagglutinin suggested adaptive evolution in the new host. The etiologic role of this virus in respiratory disease was supported by the temporal association of rising antibody titers with disease and by experimental inoculation studies. The geographic expansion of the infection and its persistence for several years indicate efficient transmission of canine influenza virus among greyhounds. Evidence of infection in pet dogs suggests that this infection may also become enzootic in this population.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crawford, P C -- Dubovi, Edward J -- Castleman, William L -- Stephenson, Iain -- Gibbs, E P J -- Chen, Limei -- Smith, Catherine -- Hill, Richard C -- Ferro, Pamela -- Pompey, Justine -- Bright, Rick A -- Medina, Marie-Jo -- Johnson, Calvin M -- Olsen, Christopher W -- Cox, Nancy J -- Klimov, Alexander I -- Katz, Jacqueline M -- Donis, Ruben O -- New York, N.Y. -- Science. 2005 Oct 21;310(5747):482-5. Epub 2005 Sep 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16186182" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Antibodies, Viral/blood ; Cell Line ; Cytopathogenic Effect, Viral ; Disease Outbreaks/*veterinary ; Dog Diseases/epidemiology/pathology/*transmission/*virology ; Dogs ; Florida/epidemiology ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/genetics ; Horse Diseases/transmission/*virology ; Horses ; *Influenza A Virus, H3N8 Subtype/classification/immunology/isolation & ; purification/pathogenicity ; Molecular Sequence Data ; Orthomyxoviridae Infections/epidemiology/transmission/*veterinary/virology ; Phylogeny ; Respiratory System/pathology ; Sequence Analysis, RNA ; Species Specificity ; United States/epidemiology ; Virus Shedding
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1992-11-20
    Description: The evolutionary relationships of the onychophorans (velvet worms) and the monophyly of the arthropods have generated considerable debate. Cladistic analyses of 12S ribosomal RNA sequences indicate that arthropods are monophyletic and include the onychophorans. Maximum parsimony analyses and monophyly testing within arthropods indicate that myriapods (millipedes and centipedes) form a sister group to all other assemblages, whereas crustaceans (shrimps and lobsters) plus hexapods (insects and allied groups) form a well-supported monophyletic group. Parsimony analysis further suggests that onychophorans form a sister group to chelicerates (spiders and scorpions) and crustaceans plus hexapods, but this relationship is not well supported by monophyly testing. These relationships conflict with current hypotheses of evolutionary pathways within arthropods.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ballard, J W -- Olsen, G J -- Faith, D P -- Odgers, W A -- Rowell, D M -- Atkinson, P W -- New York, N.Y. -- Science. 1992 Nov 20;258(5086):1345-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Entomology, CSIRO, Canberra, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1455227" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; DNA, Mitochondrial/*genetics ; Humans ; Invertebrates/*genetics ; Molecular Sequence Data ; Phylogeny ; RNA, Ribosomal/*genetics ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-04-22
    Description: The outbreak of highly pathogenic avian influenza of the H5N1 subtype in Asia, which has subsequently spread to Russia, the Middle East, Europe, and Africa, has put increased focus on the role of wild birds in the persistence of influenza viruses. The ecology, epidemiology, genetics, and evolution of pathogens cannot be fully understood without taking into account the ecology of their hosts. Here, we review our current knowledge on global patterns of influenza virus infections in wild birds, discuss these patterns in the context of host ecology and in particular birds' behavior, and identify some important gaps in our current knowledge.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Olsen, Bjorn -- Munster, Vincent J -- Wallensten, Anders -- Waldenstrom, Jonas -- Osterhaus, Albert D M E -- Fouchier, Ron A M -- New York, N.Y. -- Science. 2006 Apr 21;312(5772):384-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Infectious Diseases, Umea University, SE-90187 Umea, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16627734" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture ; Animal Migration ; Animals ; Animals, Wild/physiology/*virology ; Birds/physiology/*virology ; Disease Outbreaks/veterinary ; Disease Reservoirs ; Genetic Variation ; Influenza A Virus, H5N1 Subtype/isolation & purification/pathogenicity ; Influenza A virus/classification/genetics/isolation & purification/*pathogenicity ; Influenza in Birds/*epidemiology/*transmission/virology ; Phylogeny ; Poultry ; Prevalence ; Reassortant Viruses
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2007-09-29
    Description: The genome of the eukaryotic protist Giardia lamblia, an important human intestinal parasite, is compact in structure and content, contains few introns or mitochondrial relics, and has simplified machinery for DNA replication, transcription, RNA processing, and most metabolic pathways. Protein kinases comprise the single largest protein class and reflect Giardia's requirement for a complex signal transduction network for coordinating differentiation. Lateral gene transfer from bacterial and archaeal donors has shaped Giardia's genome, and previously unknown gene families, for example, cysteine-rich structural proteins, have been discovered. Unexpectedly, the genome shows little evidence of heterozygosity, supporting recent speculations that this organism is sexual. This genome sequence will not only be valuable for investigating the evolution of eukaryotes, but will also be applied to the search for new therapeutics for this parasite.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morrison, Hilary G -- McArthur, Andrew G -- Gillin, Frances D -- Aley, Stephen B -- Adam, Rodney D -- Olsen, Gary J -- Best, Aaron A -- Cande, W Zacheus -- Chen, Feng -- Cipriano, Michael J -- Davids, Barbara J -- Dawson, Scott C -- Elmendorf, Heidi G -- Hehl, Adrian B -- Holder, Michael E -- Huse, Susan M -- Kim, Ulandt U -- Lasek-Nesselquist, Erica -- Manning, Gerard -- Nigam, Anuranjini -- Nixon, Julie E J -- Palm, Daniel -- Passamaneck, Nora E -- Prabhu, Anjali -- Reich, Claudia I -- Reiner, David S -- Samuelson, John -- Svard, Staffan G -- Sogin, Mitchell L -- AI42488/AI/NIAID NIH HHS/ -- AI43273/AI/NIAID NIH HHS/ -- AI51687/AI/NIAID NIH HHS/ -- R01 AI043273/AI/NIAID NIH HHS/ -- R01 AI048082/AI/NIAID NIH HHS/ -- R01 HG004164/HG/NHGRI NIH HHS/ -- R01 HG004164-01/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2007 Sep 28;317(5846):1921-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Marine Biological Laboratory, Woods Hole, MA 02543-1015, USA. morrison@mbl.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17901334" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Biological Evolution ; DNA Replication/genetics ; *Eukaryotic Cells ; Gene Transfer, Horizontal ; Genes, Protozoan ; *Genome, Protozoan ; Genomics ; Giardia lamblia/classification/*genetics/physiology ; Metabolic Networks and Pathways/genetics ; Molecular Sequence Data ; Phylogeny ; Protein Kinases/genetics/metabolism ; Protozoan Proteins/chemistry/genetics/metabolism ; RNA Processing, Post-Transcriptional ; Signal Transduction ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-01-28
    Description: Seagrasses colonized the sea on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet. Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals unique insights into the genomic losses and gains involved in achieving the structural and physiological adaptations required for its marine lifestyle, arguably the most severe habitat shift ever accomplished by flowering plants. Key angiosperm innovations that were lost include the entire repertoire of stomatal genes, genes involved in the synthesis of terpenoids and ethylene signalling, and genes for ultraviolet protection and phytochromes for far-red sensing. Seagrasses have also regained functions enabling them to adjust to full salinity. Their cell walls contain all of the polysaccharides typical of land plants, but also contain polyanionic, low-methylated pectins and sulfated galactans, a feature shared with the cell walls of all macroalgae and that is important for ion homoeostasis, nutrient uptake and O2/CO2 exchange through leaf epidermal cells. The Z. marina genome resource will markedly advance a wide range of functional ecological studies from adaptation of marine ecosystems under climate warming, to unravelling the mechanisms of osmoregulation under high salinities that may further inform our understanding of the evolution of salt tolerance in crop plants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Olsen, Jeanine L -- Rouze, Pierre -- Verhelst, Bram -- Lin, Yao-Cheng -- Bayer, Till -- Collen, Jonas -- Dattolo, Emanuela -- De Paoli, Emanuele -- Dittami, Simon -- Maumus, Florian -- Michel, Gurvan -- Kersting, Anna -- Lauritano, Chiara -- Lohaus, Rolf -- Topel, Mats -- Tonon, Thierry -- Vanneste, Kevin -- Amirebrahimi, Mojgan -- Brakel, Janina -- Bostrom, Christoffer -- Chovatia, Mansi -- Grimwood, Jane -- Jenkins, Jerry W -- Jueterbock, Alexander -- Mraz, Amy -- Stam, Wytze T -- Tice, Hope -- Bornberg-Bauer, Erich -- Green, Pamela J -- Pearson, Gareth A -- Procaccini, Gabriele -- Duarte, Carlos M -- Schmutz, Jeremy -- Reusch, Thorsten B H -- Van de Peer, Yves -- England -- Nature. 2016 Feb 18;530(7590):331-5. doi: 10.1038/nature16548. Epub 2016 Jan 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Groningen Institute of Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103, 9700 CC Groningen, The Netherlands. ; Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium. ; GEOMAR Helmholtz Centre for Ocean Research-Kiel, Evolutionary Ecology, Dusternbrooker Weg 20, D-24105 Kiel, Germany. ; Sorbonne Universite, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France. ; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy. ; Dipartimento di Scienze Agrarie e Ambientali, University of Udine, Via delle Scienze 206, 33100 Udine, Italy. ; INRA, UR1164 URGI-Research Unit in Genomics-Info, INRA de Versailles-Grignon, Route de Saint-Cyr, Versailles 78026, France. ; Institute for Evolution and Biodiversity, Westfalische Wilhelms-University of Munster, Hufferstrasse 1, D-48149 Munster, Germany. ; Institute for Computer Science, Heinrich Heine University, D-40255 Duesseldorf, Germany. ; Department of Biological and Environmental Sciences, Bioinformatics Infrastructure for Life Sciences (BILS), University of Gothenburg, Medicinaregatan 18A, 40530 Gothenburg, Sweden. ; Department of Energy Joint Genome Institute, 2800 Mitchell Dr., #100, Walnut Creek, California 94598, USA. ; Environmental and Marine Biology, Faculty of Science and Engineering, Abo Akademi University, Artillerigatan 6, FI-20520 Turku/Abo, Finland. ; HudsonAlpha Institute for Biotechnology, 601 Genome Way NW, Huntsville, Alabama 35806, USA. ; Marine Ecology Group, Nord University, Postbox 1490, 8049 Bodo, Norway. ; Amplicon Express, 2345 NE Hopkins Ct., Pullman, Washington 99163, USA. ; School of Marine Science and Policy, Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, 15-Innovation Way, Newark, Delaware 19711, USA. ; Marine Ecology and Evolution, Centre for Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal. ; King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal 23955-6900, Saudi Arabia. ; University of Kiel, Faculty of Mathematics and Natural Sciences, Christian-Albrechts-Platz 4, 24118 Kiel, Germany. ; Genomics Research Institute, University of Pretoria, Hatfield Campus, Pretoria 0028, South Africa. ; Bioinformatics Institute Ghent, Ghent University, Ghent B-9000, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26814964" target="_blank"〉PubMed〈/a〉
    Keywords: Acclimatization/genetics ; Adaptation, Physiological/*genetics ; Cell Wall/chemistry ; Ethylenes/biosynthesis ; *Evolution, Molecular ; Gene Duplication ; Genes, Plant/genetics ; Genome, Plant/*genetics ; Metabolic Networks and Pathways ; Molecular Sequence Data ; Oceans and Seas ; Osmoregulation/genetics ; Phylogeny ; Plant Leaves/metabolism ; Plant Stomata/genetics ; Pollen/metabolism ; Salinity ; Salt-Tolerance/genetics ; *Seawater ; Seaweed/genetics ; Terpenes/metabolism ; Zosteraceae/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...