ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2007-10-06
    Description: The simple circadian oscillator found in cyanobacteria can be reconstituted in vitro using three proteins-KaiA, KaiB, and KaiC. The total phosphorylation level of KaiC oscillates with a circadian period, but the mechanism underlying its sustained oscillation remains unclear. We have shown that four forms of KaiC differing in their phosphorylation state appear in an ordered pattern arising from the intrinsic autokinase and autophosphatase rates of KaiC and their modulation by KaiA. Kinetic and biochemical data indicate that one of these phosphoforms inhibits the activity of KaiA through interaction with KaiB, providing the crucial feedback that sustains oscillation. A mathematical model constrained by experimental data quantitatively reproduces the circadian period and the distinctive dynamics of the four phosphoforms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2427396/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2427396/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rust, Michael J -- Markson, Joseph S -- Lane, William S -- Fisher, Daniel S -- O'Shea, Erin K -- New York, N.Y. -- Science. 2007 Nov 2;318(5851):809-12. Epub 2007 Oct 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Faculty of Arts and Sciences Center for Systems Biology, Departments of Molecular and Cellular Biology and of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17916691" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*physiology ; Biological Clocks/*physiology ; Circadian Rhythm/*physiology ; Circadian Rhythm Signaling Peptides and Proteins ; Models, Biological ; Phosphorylation ; Synechococcus/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-01-15
    Description: Circadian clocks are self-sustained biological oscillators that can be entrained by environmental cues. Although this phenomenon has been studied in many organisms, the molecular mechanisms of entrainment remain unclear. Three cyanobacterial proteins and adenosine triphosphate (ATP) are sufficient to generate oscillations in phosphorylation in vitro. We show that changes in illumination that induce a phase shift in cultured cyanobacteria also cause changes in the ratio of ATP to adenosine diphosphate (ADP). When these nucleotide changes are simulated in the in vitro oscillator, they cause phase shifts similar to those observed in vivo. Physiological concentrations of ADP inhibit kinase activity in the oscillator, and a mathematical model constrained by data shows that this effect is sufficient to quantitatively explain entrainment of the cyanobacterial circadian clock.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3309039/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3309039/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rust, Michael J -- Golden, Susan S -- O'Shea, Erin K -- GM62419/GM/NIGMS NIH HHS/ -- R01 GM062419/GM/NIGMS NIH HHS/ -- R01 GM062419-08/GM/NIGMS NIH HHS/ -- R01 GM062419-09/GM/NIGMS NIH HHS/ -- R01 GM062419-09S1/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Jan 14;331(6014):220-3. doi: 10.1126/science.1197243.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Center for Systems Biology, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21233390" target="_blank"〉PubMed〈/a〉
    Keywords: ATP Synthetase Complexes/antagonists & inhibitors/metabolism ; Adenosine Diphosphate/metabolism ; Adenosine Triphosphate/metabolism ; Bacterial Proteins/antagonists & inhibitors/metabolism ; *Circadian Clocks ; *Circadian Rhythm ; Circadian Rhythm Signaling Peptides and Proteins/antagonists & ; inhibitors/metabolism ; Darkness ; *Energy Metabolism ; *Light ; Models, Biological ; Phosphorylation ; Synechococcus/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-06-27
    Description: Organisms are adapted to the relentless cycles of day and night, because they evolved timekeeping systems called circadian clocks, which regulate biological activities with ~24-hour rhythms. The clock of cyanobacteria is driven by a three-protein oscillator composed of KaiA, KaiB, and KaiC, which together generate a circadian rhythm of KaiC phosphorylation. We show that KaiB flips between two distinct three-dimensional folds, and its rare transition to an active state provides a time delay that is required to match the timing of the oscillator to that of Earth's rotation. Once KaiB switches folds, it binds phosphorylated KaiC and captures KaiA, which initiates a phase transition of the circadian cycle, and it regulates components of the clock-output pathway, which provides the link that joins the timekeeping and signaling functions of the oscillator.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506712/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506712/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, Yong-Gang -- Cohen, Susan E -- Phong, Connie -- Myers, William K -- Kim, Yong-Ick -- Tseng, Roger -- Lin, Jenny -- Zhang, Li -- Boyd, Joseph S -- Lee, Yvonne -- Kang, Shannon -- Lee, David -- Li, Sheng -- Britt, R David -- Rust, Michael J -- Golden, Susan S -- LiWang, Andy -- AI081982/AI/NIAID NIH HHS/ -- AI101436/AI/NIAID NIH HHS/ -- GM062419/GM/NIGMS NIH HHS/ -- GM100116/GM/NIGMS NIH HHS/ -- GM107521/GM/NIGMS NIH HHS/ -- R01 GM062419/GM/NIGMS NIH HHS/ -- R01 GM100116/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Jul 17;349(6245):324-8. doi: 10.1126/science.1260031. Epub 2015 Jun 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Natural Sciences, University of California, Merced, CA 95343, USA. ; Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA. ; Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA. ; Department of Chemistry, University of California, Davis, CA 95616, USA. ; School of Natural Sciences, University of California, Merced, CA 95343, USA. Quantitative and Systems Biology, University of California, Merced, CA 95343, USA. ; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA. ; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA. ; Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA. Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA. ; School of Natural Sciences, University of California, Merced, CA 95343, USA. Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA. Quantitative and Systems Biology, University of California, Merced, CA 95343, USA. Chemistry and Chemical Biology, University of California, Merced, CA 95343, USA. Health Sciences Research Institute, University of California, Merced, CA 95343, USA. aliwang@ucmerced.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26113641" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/genetics/*metabolism ; *Circadian Rhythm ; Circadian Rhythm Signaling Peptides and Proteins/*chemistry/genetics/*metabolism ; Phosphorylation ; Protein Folding ; Protein Structure, Secondary ; Synechococcus/metabolism/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...