ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Planta 193 (1994), S. 89-98 
    ISSN: 1432-2048
    Keywords: Dianthus ; Phosphatidylinositol 3-phosphate ; Phospholipid turnover ; Polyphosphoinositides ; Signal transduction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Carnation (Dianthus caryophyllus L. cv. White Sim) petal discs were radiolabelled with [32P]orthophosphate and the lipids were extracted and analysed by thin-layer chromatography and autoradiography. Phospholipids were identified by co-migration with standards using thin-layer chromatography with different solvent systems. Results showed that [32P]orthophosphate was rapidly incorporated into the minor lipids phosphatidic acid (PtdOH), phosphatidylinositol monophosphate (PtdInsP) and phosphatidylinositol bisphosphate (PtdInsP2), and relatively slowly into the structural lipids phosphatidylcholine, -ethanolamine, -glycerol and -inositol. Pulse-chase experiments revealed that the label was rapidly lost from PtdOH, PtdInsP and PtdInsP2 while the structural lipids remained radiolabelled. The amount of PtdInsP and PtdInsP2 was found to constitute 0.45% and 0.013%, respectively, of the total phospholipids, on a molar basis. Together these results show that the turnover of the chemically low-abundant polyphosphoinositides is relatively high compared with the major structural phospholipids. Phosphatidylinositol monophosphate was further characterized by showing that it incorporates myo[3H]inositol and that its major fatty-acid constituents are palmitic acid and linoleic acid. Furthermore, we present evidence for the presence of both phosphatidylinositol 3-phosphate and phosphatidylinositol 4-phosphate isomers. The significance of these results is discussed with respect to plant phosphoinositide signal transduction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Key words:Chlamydomonas ; G-protein ; Phospholipase ; Phospholipid signalling ; Phospholipid turnover ; Signal transduction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Treating Chlamydomonas moewusii cells with non-permeabilizing concentrations of mastoparan (1–5 μM) increased inositol 1,4,5-trisphosphate (InsP3) levels up to 20-fold in a dose-dependent manner and rapidly induced deflagellation and mating-structure activation, two well-defined Ca2+-responses. When metabolism of the phospholipid precursors was monitored in 32Pi-labelled cells, as much as 70% of the radioactivity in phosphatidylinositol bisphosphate (PtdInsP2) was lost within 20 s. Thereafter, the 32P-label in PtdInsP2 increased to twice the control level within 10 min. A similar pattern of 32P-labelling was also exhibited by PtdInsP. An HPLC-headgroup analysis revealed that only PtdIns4P and PtdIns(4,5)P2 were involved and not the D3-phosphorylated isomers. Correlated with the increased polyphosphoinositide (PPI) turnover, there was a massive (5- to 10-fold) increase in 32P-labelled phosphatidic acid (PtdOH) and, slightly later, an increase in its metabolic product, diacylglycerol pyrophosphate (DGPP), reflecting the phosphorylation of the resulting diacylglycerol (DAG) and PtdOH, respectively. Mastoparan-treatment of 32P-labelled cells in the presence of 0.2% n-butanol increased the formation of radioactive phosphatidylbutanol (PtdBut), a specific reporter of phospholipase D (PLD) activity. This means that mastoparan activates both phospholipase C (PLC) and PLD, and thus both pathways could contribute to the increase in PtdOH. To distinguish between them, a differential labelling strategy was applied based on the fact that 32Pi-label is slowly incorporated into structural phospholipids but rapidly incorporated into ATP. Since PLD hydrolyses a structural lipid, radioactivity only appears slowly in PtdOHPLD (and PtdBut). In contrast, PtdOHPLC is synthesised by phosphorylation of DAG, and therefore should rapidly incorporate radioactivity. In practice, PtdOH formed on addition of mastoparan was rapidly labelled, reflecting the specific radioactivity of the [32P]ATP pool. Based on the production of [32P]PtdBut, we estimate that about 5–17% of the PtdOH was generated through the PLD pathway, while the majority originated from PLC activity. Together, this is the first demonstration (i) that PLC activation is correlated with increases in Ca2+, InsP3, PtdOH and DGPP, at the cost of PtdInsP and PtdInsP2, all in one and the same cell, (ii) of the characteristics of stimulated and unstimulated PPI turnover, (iii) that stimulated turnover affects the D-4 PPI and not the 3-isomers, (iv) that PLC and PLD are activated at the same time, (v) of a simple labelling method to discriminate between the two in terms of PtdOH production.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...