Skip to main content
Log in

Rapid turnover of polyphosphoinositides in carnation flower petals

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Carnation (Dianthus caryophyllus L. cv. White Sim) petal discs were radiolabelled with [32P]orthophosphate and the lipids were extracted and analysed by thin-layer chromatography and autoradiography. Phospholipids were identified by co-migration with standards using thin-layer chromatography with different solvent systems. Results showed that [32P]orthophosphate was rapidly incorporated into the minor lipids phosphatidic acid (PtdOH), phosphatidylinositol monophosphate (PtdInsP) and phosphatidylinositol bisphosphate (PtdInsP2), and relatively slowly into the structural lipids phosphatidylcholine, -ethanolamine, -glycerol and -inositol. Pulse-chase experiments revealed that the label was rapidly lost from PtdOH, PtdInsP and PtdInsP2 while the structural lipids remained radiolabelled. The amount of PtdInsP and PtdInsP2 was found to constitute 0.45% and 0.013%, respectively, of the total phospholipids, on a molar basis. Together these results show that the turnover of the chemically low-abundant polyphosphoinositides is relatively high compared with the major structural phospholipids. Phosphatidylinositol monophosphate was further characterized by showing that it incorporates myo[3H]inositol and that its major fatty-acid constituents are palmitic acid and linoleic acid. Furthermore, we present evidence for the presence of both phosphatidylinositol 3-phosphate and phosphatidylinositol 4-phosphate isomers. The significance of these results is discussed with respect to plant phosphoinositide signal transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AU:

arbitrary units

DAG:

diacylglycerol

GroPIns(3)P:

glycerophosphoinositol 3-phosphate

GroPIns(4)P:

glycerophosphoinositol 4-phosphate

PtdCho:

phosphatidylcholine

PtdEtn:

phosphatidylethanolamine

PtdGro:

phosphatidylglycerol

PtdIns:

phosphatidylinositol

PtdInsP:

phosphatidylinositol monophosphate

PtdInsP2 :

phosphatidylinositol bisphosphate

PtdOH:

phosphatidic acid

References

  • Auger, K.R., Carpenter, C.L., Cantley, L.C., Varticovski, L. (1989) Phosphatidylinositol 3-kinase and its novel product, phosphatidylinositol 3-phosphate, are present in Saccharomyces cerevisiae. J. Biol. Chem. 264, 20181–20184

    Google Scholar 

  • Berridge, M.J. (1992) Phosphoinositides and cell signalling. In: Fidia research foundation neuroscience award lectures, vol. 6, pp. 5–45, Raven Press, New York

    Google Scholar 

  • Berridge, M.J. (1993) Inositol trisphosphate and calcium signalling. Nature 361, 315–325

    Article  CAS  PubMed  Google Scholar 

  • Berridge, M.J., Irvine, R.F. (1989) Inositol phosphates and cell signalling. Nature 341, 197–205

    Google Scholar 

  • Bligh, E.G., Dyer, W.G. (1959) A rapid method of total lipid extraction. Can. J. Biochem. Physiol. 37, 911–917

    Google Scholar 

  • Boss, W.F., Massel, M.O. (1985) Polyphosphoinositides are present in plant tissue culture cells. Biochem. Biophys. Res. Commun. 132, 1018–1023

    Google Scholar 

  • Brearley, C.A., Hanke, D.E. (1992) 3- and 4-phosphorylated phosphatidylinositols in the aquatic plant Spirodela polyrhiza L. Biochem. J. 283, 255–260

    Google Scholar 

  • Brederoo, J., de Wildt, P., Popp-Snijders, C., Irvine, R.F., Musgrave, A., van den Ende, H. (1991) Polyphosphoinositol lipids in Chlamydomonas eugametos gametes. Planta 184, 175–181

    Google Scholar 

  • Brown, J.H., Cambers, J.A., Thompson, J.E. (1991) Acyl chain and head group regulation of phospholipid catabolism in senescing carnation flowers. Plant Physiol. 95, 909–916

    Google Scholar 

  • Coté, G.G., Morse, M.J., Crain, R.C., Satter, R.L. (1987) Isolation of soluble metabolites of the phosphatidylinositol cycle from Samanea saman. Plant Cell Rep. 6, 1352–355

    Google Scholar 

  • Coté, G.G., Crain, R.C. (1992) Arteficial elevation of the apparent levels of phosphatidic acid and phosphatidylinositol 4,5-bisphosphate during short-term labeling of plant tissue with radioactive precursor. Plant Physiol. 100, 1042–1043

    Google Scholar 

  • Coté, G.G., DePass, A.L., Quarmby, L.M., Tate, B.F., Morse, M.J., Satter, R.L., Crain, R.C. (1989) Separation and characterization of inositol phospholipids from the pulvini of Samanea saman. Plant Physiol. 90, 1422–1428

    Google Scholar 

  • Downes, C.P., Carter, A.N. (1991) Phosphoinositide 3-kinase: A new effector in signal transduction? Cell. Signall. 3, 501–513

    Google Scholar 

  • Drøbak, B.K., Ferguson, I.B., Dawson, A.P., Irvine, R.F. (1988) Inositol-containing lipids in suspension-cultured plant cells. Plant Physiol. 87, 217–222

    Google Scholar 

  • Einspahr, K.J., Thompson, Jr. G.A. (1990) Transmembrane signalling via phosphatidylinositol 4,5-bisphosphate hydrolysis in plants. Plant Physiol. 93, 361–366

    Google Scholar 

  • Einspahr, K.J., Peeler, T.C., Thompson, Jr. G.A. (1988) Rapid changes in polyphosphoinositide metabolism associated with the response of Dunaliella salina to hypoosmotic shock. J. Biol. Chem. 263, 5775–5779

    Google Scholar 

  • Einspahr, K.J., Peeler, T.C., Thompson, Jr. G.A. (1989) Phosphatidylinositol 4,5-bisphosphate phospholipase C and phosphomonoesterase in Dunaliella salina membranes. Plant Physiol. 90, 1115–1120

    Google Scholar 

  • Ha, K.S., Thompson, Jr. G.A. (1991) Diacylglycerol metabolism in the green alga Dunaliella salina under osmotic stress. Plant Physiol. 97, 921–927

    Google Scholar 

  • Heim, S., Wagner, K.G. (1986) Evidence of phosphorylated phosphatidylinositols in the growth cycle of suspension cultured plant cells. Biochem. Biophys. Res. Commun. 134, 1175–1181

    Google Scholar 

  • Heim, S., Wagner, K.G. (1987) Enzymatic activities of the phosphatidylinositol cycle during growth of suspension cultured plant cells. Plant Sci. 49, 167–173

    Google Scholar 

  • Heim, S., Wagner, K.G. (1990) Kinetics of incorporation of labelled inorganic phosphate into the phospholipids of suspension-cultured Catharanthus roseus cells. Plant Physiol. (Life Sci. Adv.) 90, 7–13

    Google Scholar 

  • Hepler, P.K., Wayne, R.O. (1985) Calcium and plant developement. Annu. Rev. Plant Physiol. 36, 397–439

    Google Scholar 

  • Hetherington, A.M., Drøbak, B.K. (1992) Inositol containing lipids in higher plants. Prog. Lipid Res. 31, 53–63

    Google Scholar 

  • Huijberts, G.N.M., Eggink, G., De Waard, P., Huisman, G.W., Witholt, B. (1992) Pseudomonas putida KT2442 cultivated on glucose accumulates poly(3-hydroxy)alkanoates consisting of saturated and unsaturated monomers. Appl. Environ. Microbiol. 58, 536–544

    Google Scholar 

  • Irvine, R.F. (1992) Inositol lipids in cell signalling. Curr. Opin. Cell Biol. 4, 212–219

    Google Scholar 

  • Irvine, R.F., Letcher, A.J., Lander, D.J., Drøbak, B.K., Dawson, A.P., Musgrave, A. (1989) Phosphatidylinositol(4,5)bisphosphate and phosphatidylinositol(4)phosphate in plant tissues. Plant Physiol. 89, 888–892

    Google Scholar 

  • Irvine, R.F., Letcher, A.J., Stephens, L.R., Musgrave, A. (1992) Inositol polyphosphate metabolism and inositol lipids in a green alga Chlamydomonas eugametos. Biochem. J. 281, 261–266

    Google Scholar 

  • Kamada, Y., Muto, S. (1991) Ca2+ regulation of phosphatidylinositol turnover in the plasma membrane of tobacco suspension culture cells. Biochim. Biophys. Acta 1093, 72–79

    Google Scholar 

  • Kates, M. (1988) Techniques of lipidology: Isolation, analysis and identification of lipids. In: Laboratory techniques in biochemistry and molecular biology, vol. 3, pp. 240–241, Burdon, R.H., Van Knippenberg, P.H., eds. Elsevier, Amsterdam New York Oxford

    Google Scholar 

  • Kauss, H. (1987) Some aspects of calcium-dependent regulation in plants metabolism. Annu. Rev. Plant Physiol. 38, 47–72

    Google Scholar 

  • Lehle, L. (1990) Phosphatidyl inositol metabolism and its role in signal transduction in growing plants. Plant Mol. Biol. 15, 647–658

    Google Scholar 

  • Lundberg, G.A., Sommarin, M. (1992) Diacylglycerol kinase in plasma membranes from wheat. Biochim. Biophys. Acta 1123, 177–183

    Google Scholar 

  • Majerus, P.W., Connolly, T.M., Deckmyn, H., Ross, T.S., Bross, T.E., Ishii, H., Bansal, V.S., Wilson, D.B. (1986) The metabolism of phosphoinositide-derived messenger molecules. Science 234, 1519–1526

    Google Scholar 

  • McMurray, W.C., Irvine, R.F. (1988) Phosphatidylinositol 4,5-bisphosphate phosphodiesterase in higher plants. Biochem. J. 249, 877–881

    Google Scholar 

  • Melin, P.M., Sommarin, M., Sandelius, A.S., Jergil, B. (1987) Identification of Ca2+-stimulated polyphosphoinositide phospholipase C in isolated plant plasma membranes. FEBS Lett. 223, 87–91

    Google Scholar 

  • Melin, P.M., Pical, C., Jergil, B., Sommarin, M. (1992) Polyphosphoinositide phospholipase C in wheat root plasma membranes. Partial purification and characterization. Biochim. Biophys. Acta 1123, 163–169

    Google Scholar 

  • Müller, E., Hegewald, H., Jaroszewicz, K., Cumme, G.A., Hoppe, H., Frunder, H. (1986) Turnover of phosphomonoester groups and compartmentation of polyphosphoinositides in human erythrocytes. Biochem. J. 235, 775–783

    Google Scholar 

  • Musgrave, A., Kuin, H., Jongen, M., de Wildt, P., Schuring, F., Klerk, H., van den Ende, H. (1992) Ethanol stimulates phospholipid turnover and inositol 1,4,5-trisphosphate production in Chlamydomonas eugametos gametes. Planta 186, 442–4449

    Google Scholar 

  • Nishizuka, Y. (1988) The molecular heterogenity of protein kinase C and its implications for cellular regulation. Nature 334, 661–665

    Google Scholar 

  • Ohlrogge, J.B., Browse, J., Sommerville, C.R. (1991) The genetics of plant lipids. Biochim. Biophys. Acta 1082, 1–26

    Google Scholar 

  • Palmer, S., Hawkins, P.T., Michell, R.H., Kirk, C.J. (1986) The labelling of polyphosphoinositides with [32P]Pi and the accumulation of inositol phosphates in vasopressin-stimulated hepatocytes. Biochem. J. 238, 491–499

    Google Scholar 

  • Panayotou, G., Waterfield, M.D. (1992) Phosphatidylinositol 3-kinase: a key enzyme in diverse signalling processes. Trends Cell Biol. 2, 358–368

    Google Scholar 

  • Payrastre, B., Nievers, M., Boonstra, J., Breton, M., Verkleij, A.J., Van Bergen en Henegouwen, P.M.P. (1992) A differential location of phosphoinositide kinases, diacylglycerol kinase, and phospholipase C in the nuclear matrix. J. Biol. Chem. 267, 5078–5084

    Google Scholar 

  • Pfaffmann, H., Hartmann, E., Brightman, A.O., Morré, D.J. (1987) Phosphatidylinositol specific phospholipase C of plant stems. Plant Physiol. 85, 1151–1155

    Google Scholar 

  • Pical, C., Sandelius, A.S., Melin, P.M., Sommarin, M. (1992) Polyphosphoinositide phospholipase C in plasma membranes of wheat (Triticum aestivum L.). Plant Physiol. 100, 1296–1303

    Google Scholar 

  • Poovaiah, B.W., Reddy, A.S.N. (1987) Calcium messenger systems in plants. CRC. Crit. Rev. Plant Sci. 6, 47–103

    Google Scholar 

  • Rincón, M., Boss, W.F. (1990) Seccond-messenger role of phosphoinositides. In: Inositol metabolism in plants, pp. 173–200, Morré, D.J., Boss, W.F., Loewus, F.A., eds. Wiley-Liss Inc., New York

    Google Scholar 

  • Rincón, M., Chen, Q., Boss, W.F. (1989) Characterization of inositol phosphates in carrot (Daucus carota L.) cells. Plant Physiol. 89, 126–132

    Google Scholar 

  • Sandelius, A.S., Sommarin, M. (1986) Phosphorylation of phosphatidylinositols in isolated plant membranes. FEBS Lett. 201, 282–286

    Google Scholar 

  • Sandelius, A.S., Sommarin, M. (1990) Membrane-localized reactions involved in polyphosphoinositide turnover in plants. In: Inositol metabolism in plants, pp. 139–161, Morré, D.J., Boss, W.F., Loewus, F.A., eds. Wiley-Liss Inc., New York

    Google Scholar 

  • Sommarin, M., Sandelius, A.S. (1988) Phosphatidylinositol and phosphatidylinositolphosphate kinases in plant plasma membranes. Biochim. Biophys. Acta 958, 268–278

    Google Scholar 

  • Stephens, L.R., Hughes, K.T., Irvine, R.F. (1991) Pathway of phosphatidylinositol(3,4,5)-trisphosphate synthesis in activated neutrophils. Nature 351, 33–39

    Google Scholar 

  • Tate, B.F., Schaller, G.E., Sussman, M.R., Crain, R.C. (1989) Characterization of a polyphosphoinositide phospholipase C from the plasma membrane of Avena sativa. Plant Physiol. 91, 1275–1279

    Google Scholar 

  • Trewavas, A.J., Gilroy, S. (1991) Signal transduction in plant cells. Trends Genet. 7, 356–361

    Google Scholar 

  • Van Breemen, R.B., Wheeler, J.J., Boss, W.F. (1990) Identification of carrot inositol phospholipids by fast atom bombardment mass spectrometry. Lipids 25, 328–334

    Google Scholar 

  • Wagh, S.S., Menon, K.K.G., Natarajan, V. (1988) Evidence for the incorporation of [32P]-orthophosphate into leaf inositol phospholipids. Biochim. Biophys. Acta 962, 178–185

    Google Scholar 

  • Walsh, J.P., Caldwell, K.K., Majerus, P.W. (1991) Formation of phosphatidylinositol 3-phosphate by isomerization from phosphatidylinositol 4-phosphate. Proc. Natl. Acad. Sci. USA 88, 9184–9187

    Google Scholar 

  • Wheeler, J.J., Boss, W.F. (1987) Polyphosphoinositides are present in plasma membranes isolated from fusogenic carrot cells. Plant Physiol. 85, 389–392

    Google Scholar 

  • Whitman, M., Downes, C.P., Keeler, M., Keller, T., Cantley, L. (1988) Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol(3)phosphate. Nature 332, 644–646

    Google Scholar 

  • Wissing, J.B., Heim, S., Wagner, K.G. (1989) Diacylglycerol kinase from suspension cultured plant cells. Plant Physiol. 90, 1546–1551

    Google Scholar 

  • Wissing, J.B., Wagner, K.G. (1992) Diacylglycerol kinase from suspension cultured plant cells. Plant Physiol. 98, 1148–1153

    Google Scholar 

  • Woltering, E.J., van Hout, M., Somhorst, D., Harren, F. (1993) Roles of pollination and short-chain saturated fatty acids in flower senescence. Plant Growth Regul. 12, 1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We thank Theo de Rijk and Gern Huijberts (ATO-DLO) for the GC-MS analysis of fatty acids, Eddy Smid (ATO-DLO) for yeast cultures, Hans Klerk (University of Amsterdam) for his discussions concerning isotopic labelling, and Jeanine Brederoo (University of Amsterdam) and Ernst Woltering (ATO-DLO) for critical reading of this manuscript. We are indebted to Bernard Payrastre (INSERM Unité 326, Toulouse, France) for analyzing the PtdInsP isomers by HPLC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munnik, T., Musgrave, A. & de Vrije, T. Rapid turnover of polyphosphoinositides in carnation flower petals. Planta 193, 89–98 (1994). https://doi.org/10.1007/BF00191611

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00191611

Key words

Navigation