ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2005-04-12
    Description: Vasopressin and oxytocin strongly modulate autonomic fear responses, through mechanisms that are still unclear. We describe how these neuropeptides excite distinct neuronal populations in the central amygdala, which provides the major output of the amygdaloid complex to the autonomic nervous system. We identified these two neuronal populations as part of an inhibitory network, through which vasopressin and oxytocin modulate the integration of excitatory information from the basolateral amygdala and cerebral cortex in opposite manners. Through this network, the expression and endogenous activation of vasopressin and oxytocin receptors may regulate the autonomic expression of fear.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huber, Daniel -- Veinante, Pierre -- Stoop, Ron -- New York, N.Y. -- Science. 2005 Apr 8;308(5719):245-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular Biology and Morphology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15821089" target="_blank"〉PubMed〈/a〉
    Keywords: Amygdala/cytology/drug effects/*physiology ; Animals ; Antidiuretic Hormone Receptor Antagonists ; Autoradiography ; Fear/physiology ; In Vitro Techniques ; Neurons/*physiology ; Oxytocin/*analogs & derivatives/pharmacology/*physiology ; Patch-Clamp Techniques ; Rats ; Rats, Sprague-Dawley ; Receptors, Oxytocin/agonists/antagonists & inhibitors/metabolism ; Receptors, Vasopressin/agonists/metabolism ; Tetrodotoxin/pharmacology ; Vasopressins/*physiology ; gamma-Aminobutyric Acid/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-11-13
    Description: Active dendrites provide neurons with powerful processing capabilities. However, little is known about the role of neuronal dendrites in behaviourally related circuit computations. Here we report that a novel global dendritic nonlinearity is involved in the integration of sensory and motor information within layer 5 pyramidal neurons during an active sensing behaviour. Layer 5 pyramidal neurons possess elaborate dendritic arborizations that receive functionally distinct inputs, each targeted to spatially separate regions. At the cellular level, coincident input from these segregated pathways initiates regenerative dendritic electrical events that produce bursts of action potential output and circuits featuring this powerful dendritic nonlinearity can implement computations based on input correlation. To examine this in vivo we recorded dendritic activity in layer 5 pyramidal neurons in the barrel cortex using two-photon calcium imaging in mice performing an object-localization task. Large-amplitude, global calcium signals were observed throughout the apical tuft dendrites when active touch occurred at particular object locations or whisker angles. Such global calcium signals are produced by dendritic plateau potentials that require both vibrissal sensory input and primary motor cortex activity. These data provide direct evidence of nonlinear dendritic processing of correlated sensory and motor information in the mammalian neocortex during active sensation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Ning-long -- Harnett, Mark T -- Williams, Stephen R -- Huber, Daniel -- O'Connor, Daniel H -- Svoboda, Karel -- Magee, Jeffrey C -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Dec 13;492(7428):247-51. doi: 10.1038/nature11601. Epub 2012 Nov 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23143335" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Animal/*physiology ; Calcium/metabolism ; Dendrites/*physiology ; Male ; Mice ; Mice, Inbred C57BL ; Motor Activity/*physiology ; Patch-Clamp Techniques ; Pyramidal Cells/physiology ; Sensation/*physiology ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...