ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ozone laminae  (1)
  • scald  (1)
Collection
Publisher
Years
  • 1
    ISSN: 1573-0662
    Keywords: Ozone laminae ; mid-latitudes ; ozone depletion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract In this paper, we show that the rate of ozone loss in both polar and mid-latitudes, derived from ozonesonde and satellite data, has almost the same vertical distribution (although opposite sense) to that of ozone laminae abundance. Ozone laminae appear in the lower stratosphere soon after the polar vortex is established in autumn, increase in number throughout the winter and reach a maximum abundance in late winter or spring. We indicate a possible coupling between mid-winter, sudden stratospheric warmings (when the vortex is weakened or disrupted) and the abundance of ozone laminae using a 23-year record of ozonesonde data from the World Ozone Data Center in Canada combined with monthly-mean January polar temperatures at 30 hPa. Results are presented from an experiment conducted during the winter of 1994/95, in phase II of the Second European Stratospheric And Mid-latitude Experiment (SESAME), in which 93 ozone-enhanced laminae of polar origin observed by ozonesondes at different time and locations are linked by diabatic trajectories, enabling them to be probed twice or more. It is shown that, in general, ozone concentrations inside laminae fall progressively with time, mixing irreversibly with mid-latitude air on time-scales of a few weeks. A particular set of laminae which advected across Europe during mid February 1995 are examined in detail. These laminae were observed almost simultaneously at seven ozonesonde stations, providing information on their spatial scales. The development of these laminae has been modelled using the Contour Advection algorithm of Norton (1994), adding support to the concept that many laminae are extrusions of vortex air. Finally, a photochemical trajectory model is used to show that, if the air in the laminae is chemically activated, it will impact on mid-latitude ozone concentrations. An estimate is made of the potential number of ozone molecules lost each winter via this mechanism.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5060
    Keywords: marker-assisted selection ; genetics ; barley ; Hordeum vulgare ; scald ; Rhynchosporium secalis ; Canada
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The genetic basis of resistance to scald (Rhynchosporium secalis) within barley breeding populations is poorly understood. The design of effective genetically based resistance strategies is predicated on knowledge of the identity of the resistance genes carried by potential parents. The resistance exhibited by a broad selection of western Canadian barley lines was investigated by evaluating their reactions to five R. secalis isolates. Results were compared to the resistance exhibited by previously characterized lines. This comparison, combined with pedigree analysis indicated that there are two different resistance genes present inwwestern Canadian cultivars. These genes were shown to be independent through analysis of a segregating population derived from a cross between Falcon and CDC Silky. This evidence, along with observed linkage of the gene in CDC Silky with an allele specific amplicon developed for a Rhynchosporium secalis resistance locus on chromosome 3, provides evidence that the gene in Falcon is the Rh2 gene derived from Atlas, and the gene (s) in CDC Silky is located within the Rh/Rh3/Rh4 cluster and is similar to the Rh gene in Hudson.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...