ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oceanography  (4)
Collection
Years
  • 1
    Publication Date: 2011-08-23
    Description: Annual layers are visible in the Greenland Ice Sheet Project 2 ice core from central Greenland, allowing rapid dating of the core. Changes in bubble and grain structure caused by near-surface, primarily summertime formation of hoar complexes provide the main visible annual marker in the Holocene, and changes in "cloudiness" of the ice correlated with dustiness mark Wisconsinan annual cycles; both markers are evident and have been intercalibrated in early Holocene ice. Layer counts are reproducible between different workers and for one worker at different times, with 1% error over century-length times in the Holocene. Reproducibility is typically 5% in Wisconsinan ice-age ice and decreases with increasing age and depth. Cumulative ages from visible stratigraphy are not significantly different from independent ages of prominent events for ice older than the historical record and younger than approximately 50,000 years. Visible observations are not greatly degraded by "brittle ice" or many other core-quality problems, allowing construction of long, consistently sampled time series. High accuracy requires careful study of the core by dedicated observers.
    Keywords: Oceanography
    Type: Laboratory for Hydrospheric Processes Research Publications; 83-84
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-15
    Description: C band images of Arctic sea ice taken by the ERS 1 synthetic aperture radar show transitory regions of enhanced radar backscatter from young sea ice. Published field observations associate this increase with frost flower growth and the capture of blowing snow by the flowers. To investigate the first part of this phenomenon, we carried out a laboratory experiment on the response of C band radar backscatter to frost flowers growing on the surface of newly formed saline ice. The experiment took place in a 5 m by 7 m by 1.2 m deep saline water pool located in a two-story indoor refrigerated facility at the Cold Regions Research and Engineering Laboratory. Sodium chloride ice was grown in this pool at an air temperature of -28 C. The frost flowers first appeared on the ice surface as dendrites and then changed to needles as the ice sheet grew thicker and the surface temperatures became colder. The frost flowers reached to a height of 10-15 mm, and beneath each cluster of frost flowers a slush layer formed to a thickness of approximately 4 mm. Far-field radar measurements of the backscatter from the ice were made at incident angles from 20 C to 40 C and at approximately 6-hour intervals throughout the 3-day period of the experiment. A backscatter minimum occurred early in the flower growth at the time coincident with an abrupt doubling in the ice surface salinity. Once the full flower coverage was achieved, we removed first the crystal flowers and then the slush layer from the ice surface. The results for these cases show that the crystals have little impact on the backscatter, while the underlying slush patches yield a backscatter increase of 3-5 dB over that o f bare ice. The laboratory results suggest that this relative backscatter increase of approximately 5 dB can be used as an index to mark the full areal coverage of frost flowers.
    Keywords: Oceanography
    Type: Paper 96JC03208 , Journal of Geophysical Research (ISSN 0148-0227); 102; C2; 3357-3370
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: This paper presents a model to calculate the temperature dependence of effective permittivities for sea ice, a heterogeneous medium containing multiphase scatterers. With the strong permittivity fluctuation approach the model accounts for the electrodynamic scattering effect together with the quasi-static characteristics of multiple species and subspecies of inhomogeneities with distributed orientations, sizes, and shapes. Because of a preferential direction in the orientation distribution, the medium is effectively anisotropic. The size distribution is described with a probability density function in terms of normalized volumetric sizes. Scatterer shapes are nonuniform and have a general ellipsoidal form characterized by arbitrary axial ratios of correlation lengths which are related to physical geometries of the scatterers. In this formulation, sea ice consisting of solid ice, liquid brine, and gaseous inclusions is modeled to derive effective permittivities with thermodynamic phase redistribution and structural metamorphism. Theoretical results are in good agreement with experimental data at the C band frequency of 4.8 GHz for saline ice undergoing warming and cooling cycles. A competitive effect between the increase of liquid brine and the shape rounding of ellipsoidal scatterers at increasing temperatures explains the trend observed in measured data. Sensitivities of effective permittivities to structural and physical parameters characterizing sea ice are also studied.
    Keywords: Oceanography
    Type: Paper-95RS03429 , Radio Science (ISSN 0048-6604); 31; 2; 297-311
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-15
    Description: Clouds interfere with the distribution of short-wave and long-wave radiations over sea ice, and thereby strongly affect the surface energy balance in polar regions. To evaluate the overall effects of clouds on climatic feedback processes in the atmosphere-ice-ocean system, the challenge is to observe sea ice surface thermal states under both clear sky and cloudy conditions. From laboratory experiments, we show that C-band radar (transparent to clouds) backscatter is very sensitive to the surface temperature of first-year sea ice. The effect of sea ice surface temperature on the magnitude of backscatter change depends on the thermal regimes of sea ice thermodynamic states. For the temperature range above the mirabilite (Na2SO4.10H20) crystallization point (-8.2 C), C-band data show sea ice backscatter changes by 8-10 dB for incident angles from 20 to 35 deg at both horizontal and vertical polarizations. For temperatures below the mirabilite point but above the crystallization point of MgCl2.8H2O (-18.0 C), relatively strong backwater changes between 4-6 dB are observed. These backscatter changes correspond to approximately 8 C change in temperature for both cases. The backscattering mechanism is related to the temperature which determines the thermodynamic distribution of brine volume in the sea ice surface layer. The backscatter is positively correlated to temperature and the process is reversible with thermodynamic variations such as diurnal insolation effects. From two different dates in May 1993 with clear and overcast conditions determined by the Advanced Very High Resolution Radiometer (AVHRR), concurrent Earth Resources Satellite 1 (ERS-1) C-band ice observed with increases in backscatter over first-year sea ice, and verified by increases in in-situ sea ice surface temperatures measured at the Collaborative-Interdisciplinary Cryosphere Experiment (C-ICE) site.
    Keywords: Oceanography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...