ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-11-14
    Description: Water stable isotopes in Greenland ice core data provide key paleoclimatic information, and have been compared with precipitation isotopic composition simulated by isotopically enabled atmospheric models. However, post-depositional processes linked with snow metamorphism remain poorly documented. For this purpose, monitoring of the isotopic composition (δ18O, δD) of near-surface water vapor, precipitation and samples of the top (0.5 cm) snow surface has been conducted during two summers (2011–2012) at NEEM, NW Greenland. The samples also include a subset of 17O-excess measurements over 4 days, and the measurements span the 2012 Greenland heat wave. Our observations are consistent with calculations assuming isotopic equilibrium between surface snow and water vapor. We observe a strong correlation between near-surface vapor δ18O and air temperature (0.85 ± 0.11‰ °C−1 (R = 0.76) for 2012). The correlation with air temperature is not observed in precipitation data or surface snow data. Deuterium excess (d-excess) is strongly anti-correlated with δ18O with a stronger slope for vapor than for precipitation and snow surface data. During nine 1–5-day periods between precipitation events, our data demonstrate parallel changes of δ18O and d-excess in surface snow and near-surface vapor. The changes in δ18O of the vapor are similar or larger than those of the snow δ18O. It is estimated using the CROCUS snow model that 6 to 20% of the surface snow mass is exchanged with the atmosphere. In our data, the sign of surface snow isotopic changes is not related to the sign or magnitude of sublimation or deposition. Comparisons with atmospheric models show that day-to-day variations in near-surface vapor isotopic composition are driven by synoptic variations and changes in air mass trajectories and distillation histories. We suggest that, in between precipitation events, changes in the surface snow isotopic composition are driven by these changes in near-surface vapor isotopic composition. This is consistent with an estimated 60% mass turnover of surface snow per day driven by snow recrystallization processes under NEEM summer surface snow temperature gradients. Our findings have implications for ice core data interpretation and model–data comparisons, and call for further process studies.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-09-01
    Description: Glaciers produce cirques by scouring their beds and sapping their headwalls, but evidence to constrain models of these processes has been elusive. We report a suite of environmental measurements from three cirque glacier bergschrunds, including the first temperature series recorded at depth throughout most of an annual cycle. Compared to the ambient air, the bergschrunds were colder in summer and warmer in winter. Freeze-thaw cycles were rare, and relatively stable subfreezing temperatures persisted from November until May. Using a model for rock fracturing driven by ice segregation, we demonstrate that favorable conditions for fracturing occur not only on the headwall above the glacier, but also within the bergschrund, where periglacial weathering and glacial transport can act together to drive cirque headwall retreat. A small (~3 °C) year-round decrease in temperatures to conditions more typical of the Pleistocene would likely intensify the weathering process. Though so far ignored in all glacial landscape evolution models, the bergschrund likely plays an essential role in the sculpting of alpine landscapes.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018
    Description: 〈div data-abstract-type="normal"〉〈p〉Following pioneering work in Norway, cirque glaciers have widely been viewed as rigidly rotating bodies. This model is incorrect for basin-filling cirque glaciers, as we have demonstrated at West Washmawapta Glacier, a small glacier in the Canadian Rocky Mountains. Here we report observations at the same glacier that assess whether complex temporal variations of flow also occur. For parts of three summers, we measured daily displacements of the glacier surface. In one year, four short-duration speed-up events were recorded. Three of the events occurred during the intervals of warmest weather, when melt was most rapid; the fourth event occurred immediately following heavy rain. We interpret the speed-up events as manifestations of enhanced water inputs to the glacier bed and associated slip lubrication by increased water volumes and pressures. No further speed-ups occurred in the final month of the melt season, despite warm temperatures and several rainstorms; the dominant subglacial water system likely transformed from one of poorly connected cavities to one with an efficient channel network. The seasonal evolution of hydrology and flow resembles behaviors documented at other, larger temperate glaciers and indicates that analyses of cirque erosion cannot rely on simple assumptions about ice dynamics.〈/p〉〈/div〉
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-01-03
    Description: Cirques form and evolve as glaciers attack the bed and subaerial processes dismantle the surrounding walls. Collectively, these processes—which can make a cirque longer, or deeper, or both—profoundly influence near-divide regions of glaciated mountains and yet are rarely studied in a systematic way. Toward this end, we developed a theoretical framework for the sediment budget of a cirque that includes sediment sources, transport pathways, and storage elements. We quantified each component of the sediment budget using field measurements and remote-sensing data of a glaciated alpine cirque in British Columbia, Canada. The cirque has a plan-view area of 1.64 km 2 and relief of ~780 m. Our budget values, which correspond to a period of substantial glacier retreat, are based on measurements reflecting time intervals ranging from 1 yr to 80 yr. We report errors as a range (enclosed in parentheses), analogous to 95% confidence bounds. On average, 1640 (250–7950) metric tons of rock are released by the headwall each year; nearly 90% of this debris leaves the wall as small rockfalls or in snow avalanches. Our field observations indicated that snow avalanches originating as cornice failures are currently the most important transport process on the headwall. We estimated the mass of debris transported annually by the glacier to the foreland using (1) the volume and age of the foreland ground moraine and (2) the product of rock mass per unit volume of ice and glacier velocity. Over the past several decades, the glacier delivered 6440 (1180–14930) tons/yr to the foreland via forward ice motion and margin retreat (mostly in subglacial till or sediment-rich basal layers). Less than 3% of the glacierborne sediment flux traveled as supraglacial debris (170 [50–320] tons/yr). At present, sediment evacuation from the cirque occurs in a single meltwater stream. We monitored water discharge and suspended sediment concentration in this stream between 29 June and 28 August 2007. By season’s end, 650 (80–1860) tons of sediment had passed our gauging station (equivalent to an erosion rate of 0.2 [0.03–0.70] mm/yr, when averaged over the glacier bed). Approximately one third of the total annual streamborne sediment transport occurred over a 2 d period during the first major melt event of the year. Using our budget relations and flux magnitudes, we estimate the glacier is removing between 1240 and 2470 tons of rock from its bed per year, a rate equivalent to 0.5–0.9 mm/yr of erosion glacierwide. The headwall, by comparison, is being worn away horizontally at ~1.2 (0.2–5.9) mm/yr. Thus, our results suggest that the headwall is retreating at rates roughly equivalent to vertical incision by the glacier. Our sediment budget results demonstrate that the wide variety of sediment sources and transport processes active in cirques necessitates a holistic view of cirque formation, one that most morphometric, range-scale, and glacial erosion analyses ignore.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-10-01
    Print ISSN: 0002-9599
    Electronic ISSN: 1945-452X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-11-03
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2001-01-01
    Print ISSN: 1529-6466
    Electronic ISSN: 1943-2666
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-11-26
    Description: Glacier-erosion rates range across orders of magnitude, and much of this variation cannot be attributed to basal sliding rates. Subglacial till acts as lubricating ‘fault gouge’ or ‘sawdust’, and must be removed for rapid subglacial bedrock erosion. Such erosion occurs especially where and when moulin-fed streams access the bed and are unconstrained by supercooling or other processes. Streams also may directly erode bedrock, likely with strong time-evolution. Erosion is primarily by quarrying, aided by strong fluctuations in the water system driven by variable surface melt and by subglacial earthquakes. Debris-bed friction significantly affects abrasion, quarrying and general glacier flow. Frost heave drives cirque headwall erosion as winter cold air enters bergschrunds, creating temperature gradients to drive water flow along premelted films to growing ice lenses that fracture rock, and the glacier removes the resulting blocks. Recent subglacial bedrock erosion and sediment flux are in many cases much higher than long-term averages. Over glacial cycles, evolution of glacial-valley form feeds back strongly on erosion and deposition. Most of this is poorly quantified, with parts open to argument. Glacial erosion and interactions are important to tectonic and volcanic processes as well as climate and biogeochemical fluxes, motivating vigorous research.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2000-12-10
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2001-01-01
    Description: In order to interpret measurements of ice-sheet surface elevation changes in terms of climatic or dynamic trends, it is necessary to establish the range of stochastic variability of elevation changes resulting from interannual fluctuations of accumulation rate and firn density. The analyses presented here are intended to facilitate such interpretations by defining benchmarks that characterize elevation-change variability in central Greenland, in the current climate and over the past millennium. We use a time- dependent firn-densification model coupled to an ice- and heat-flow model, forced by annual accumulation rate and temperature reconstructions from the Greenland Ice Sheet Project II (GISP2) ice core, to examine the elevation changes resulting from this climatic forcing. From these results, effective firn densities are calculated. These are factors that convert water-equivalent accumulation-rate variability to surface elevation variability. A current-climate benchmark is defined by applying this conversion to Van der Veen and Bolzan’s water-equivalent statistics, and to a 50 year accumulation variability estimate from the GISP2 core. Elevation-change statistics are compiled for the past millennium to define longer-term benchmarks, which show that multi-century variability has been substantially larger than current variability estimated by Van der Veen and Bolzan. It is estimated here that the standard deviation of net elevation change over 5 and 10 year intervals has been 0.27 and 0.38 m, respectively. An approximate method for applying these quantitative results to other dry-snow sites in Greenland is suggested.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...