ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • N2 fixation  (6)
  • 1
    ISSN: 1573-5060
    Keywords: N2 fixation ; breeding ; food legumes ; measurement techniques ; nodulation ; nitrate tolerance ; yield
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Dinitrogen fixation and legume productivity are greatly influenced through the interactions of legume host, Rhizobium, and the above- and below-ground environment. The benefits of improving legume N2 fixation include reduced reliance on soil N, leading to more sustainable agricultural systems and reduced requirements for fertilizer N, enhanced residual benefits to subsequent crops, and increased legume crop yields. Most of the gains in N2 fixation to date have been derived from management of legume cropping systems and through inoculation of legume seed with competitive and symbiotically effective rhizobia. Further gains are possible by developing plant cultivars with tolerance to soil abiotic factors, increased plant yield, and a broader and more effective matching of plant host and rhizobia. Techniques for screening material for superior N2 fixation and examples of programs to increase fixed N, with attention to the major abiotic stresses, are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: field ; Korean genotypes ; nitrate tolerance ; N2 fixation ; nodulation ; soil nitrate ; soybean ; ureides ; xylem exudate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The development of cultivars of soybean (Glycine max L. Merr.) which are capable of near-maximum levels of N2 fixation in high-NO 3 − soils remains a high priority in N2 fixation research. We report a field study to evaluate nodulation and N2 fixation by 32 genotypes of soybean, selected after two years of glasshouse screening for superior symbiotic activity in the presence of 2.5 mM NO 3 − . The 32 “NO 3 − -tolerant” genotypes and eight others (three commercial “check” cultivars and five “non-fixing” lines) were inoculated withBradyrhizobium japonicum CB 1809 and sown into a black earth soil (fine, montmorillonitic, thermic Udic Pellusterts) which contained high levels of soil NO 3 − (260 kg N ha−1; 0 to 120 cm depth) and which was free of soybean rhizobia. Nitrogen fixation activity was assessed at 89 days after sowing using the relative abundance of ureides in xylem exudate [(ureide-N/ureide-N+NO 3 − -N+α amino-N)×100] as an index of fixation. Plant growth and nodulation were assessed 11 days later. Genotypes 466, 468, 469 and 464, all of Korean origin, showed the highest levels of symbiotic activity. Many of the remaining 28 “tolerant” genotypes nodulated poorly in the field and displayed levels of N2 fixation (relative ureides) which were equivalent to two of the commercial “check” cultivars, Bragg and Elf. Correlation matrices of the measured parameters revealed highly significant correlations among the indices of nodulation and N2 fixation and poor correlation between those measurements and plant growth-seed yield. The levels of NO 3 − tolerance, displayed by the four Korean lines, may prove useful in breeding programs which aim to enhance N2 fixation by soybean in high-NO 3 − soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5036
    Keywords: intercropping ; N2 fixation ; natural15N abundance ; ureides ; Vigna umbellata ; Zea mays
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The yield of N in maize (Zea mays L.) and ricebean (Vigna umbellata [Thumb.] Ohwi and Ohashi) were compared on a Tropoqualf soil in North Thailand in 1984 and 1985. Both species were grown in field plots in monoculture or as intercrops at a constant planting density equivalent to 8 maize or 16 ricebean plants per m2. The contribution of symbiotic N2 fixation to ricebean growth was estimated from measurements of the natural abundance of15N (δ15N) in shoot nitrogen and from analysis of ureides in xylem sap vacuumextracted from detached stems. The natural abundance of15N in the intercropped ricebean was found to be considerably less than that in monoculture in both growing seasons. Using maize and a weed (Ageratum conyzoides L.) as non-fixing15N reference plants the proportions (P 15N) of ricebean shoot N derived from N2 fixation ranged from 0.27 to 0.36 in monoculture ricebean up to 0.86 when grown in a 75% maize: 25% ricebean intercrop. When glasshouse-derived calibration curves were used to calculate plant proportional N2 fixation (Pur) from the relative ureide contents of field collected xylem exudates, the contribution of N2 fixation to ricebean N yields throughout the 1985 growing season were greater in intercrop than in monocrop even at the lowest maize:legume ratio (25∶75). Seasonal patterns of sap ureide abundance indicated that N2 fixation was greatest at the time of ricebean podset. The averagePur andP 15N in ricebean during the first 90 days of growth showed identical rankings of monocrop and intercrop treatments in terms of N2 fixation, although the two sets ofP values were different. Nonetheless, seasonal estimates of N2 fixation during the entire 147 days of legume growth determined from ureide analyses indicated that equivalent amounts of N could be fixed by ricebean in a 75∶25 intercrop and in monoculture despite the former being planted at one-quarter the density.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5036
    Keywords: legumes ; N2 fixation ; 15N analysis ; ureides ; xylem exudate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Methods for partitioning the nitrogen assimilated by nodulated legumes, between nitrogen derived from soil sources and from N2 fixation, are described as applied in peninsular Malaysia. The analysis of nitrogenous components translocated from the roots to the shoots of nodulated plants in the xylem sap is outlined, with some precautions to be observed for applications in the tropics. Some examples of the use of the technique in surverying apparent N2 fixation by tropical legumes, in studying interrow cropping in plantation systems and in assessing effects of experimental treatments on N2 fixation by food legumes, are described. Techniques for assesing N2 fixation by means of15N abundance have been used to show that applications of nitrogenous fertilizers commonly used in Malaysia for soybeans depress N2 fixation, that similar results are obtained with natural abundance and15N-enrichment methods and that, in at least two locations in Malaysia, differences between the natural abundance of15N in plant-available soil nitrogen and in atmospheric N2 are great enough to permit application to measurement of N2 fixation by leguminous crops.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 174 (1995), S. 51-82 
    ISSN: 1573-5036
    Keywords: breeding ; crop legume ; heritability ; nitrate tolerance ; nodulation ; N2 fixation ; rhizobia ; yield
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Legume N2 fixation is variable, but nonetheless is a valuable process in world agriculture. There is great potential to increase the contribution by the crop legumes to the world's supply of soil.N. This will be achieved by (i) increasing the area of legumes sown by farmers; (ii) improved management of the crops in order that the major determinants of productivity, e.g. land area, water availability, are converted to harvested product with maximum efficiency; and (iii) genetic modification of the commonly-grown species to ensure high dependence of the legume crop on N2 fixation at all levels of productivity. Currently-used methods for measuring N2 fixation and for assessing heritability and repeatability of N2 fixation in breeding and selection programs are reviewed. Results from research programs to define genetic variation in N2 fixation and to enhance N2 fixation through selection and breeding are presented with particular emphasis on common bean (Phaseolus vulgaris) and soybean (Glycine max).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5036
    Keywords: humid tropics ; N balance ; N2 fixation ; N fertilizer ; nodulation ; rice ; rotation ; soybean
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We report a study in northern Thailand to examine the effects of fertilizer N, applied both to paddy rice and to a subsequent soybean crop on symbiotic and yield characteristics of soybean and on the differences between inputs of fixed N2 and the removal of N as harvested product. Treatments were a factorial arrangement of 0, 100 and 300 kg N ha-1 applied to the rice (designated R0, R100 and R300, respectively), and 0,25 and 50 kg N ha-1, applied as ‘starter’ fertilizer to the soybean (S0, S25 and S50, respectively). Nitrogen applied to the rice increased rice yields by up to 74% but proportions recovered by the rice were low (45% [R100] and 14% [R300]). The rice N treatments had only marginal effects on soybean nodulation (up to 17% reduction in early growth) and above-ground dry matter (up to 9% increase). Effects on soybean seed yield and total N2 fixed were insignificant. Starter N, applied to the soybean at sowing, also marginally reduced nodulation and enhanced above-ground dry matter. Total N2 fixed was unaffected but seed yield was increased by up to 6%. For all treatments, total above-ground N ranged from 145 to 179 kg ha-1 with 72 to 85% (122 and 140 kg ha-1) derived from N2 fixation. When harvested product consisted of seed only, differences between inputs of fixed N2 and removals of seed N were close to zero (-10 to+9 kg N ha-1) with little effect of fertilizer N. The N balances were reduced by an average of 18 kg N ha-1 when straw was included as harvested product. We concluded that N applied to the rice and to the following soybean was inefficiently used by those crops and had only marginal effects of symbiotic activity of the soybean. Furthermore, the benefit of the N2 fixing soybean in this system was to slow the decline of, rather than enhance, the N fertility of the soil
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...