ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Plant Science Letters 33 (1984), S. 337-344 
    ISSN: 0304-4211
    Keywords: Acetylene reduction ; Mutation ; Nitrate ; Nodulation ; Pisum sativum
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 82 (1984), S. 427-438 
    ISSN: 1573-5036
    Keywords: Mutant ; Mutation ; Nitrate ; Nitrate reductase ; Nodulation ; Pisum sativum L. ; Rhizobium leguminosarum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary In pea (Pisum sativum L.), mutants could be induced, modified in the symbiotic interaction withRhizobium leguminosarum. Among 250 M2-families, two nodulation resistant mutants (K5 and K9) were obtained. In mutant K5 the nodulation resistance was monogenic recessive and not Rhizobium strain specific. Out of 220 M2-families one mutant nod3 was found which could form nodules at high nitrate concentrations (15 mM KNO3). This mutant nodulated abundantly with severalRhizobium strains, both in the absence and presence of nitrate. Probably as the result of a pleiotropic effect, its root morphology was also changed. Among 1800 M2-families, five nitrate reductase deficient mutants were obtained and one of them (mutant E1) was used to study the inhibitory effect of nitrate on nodulation and nitrogen fixation. The results of the present investigation show that pea mutants which are modified in their symbiosis withRhizobium leguminosarum, can readily be obtained. The significance of such mutants for fundamental studies of the legume-Rhizobium symbiosis and for applications in plant breeding is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2003-01-11
    Description: Proteins of the ARGONAUTE family are important in diverse posttranscriptional RNA-mediated gene-silencing systems as well as in transcriptional gene silencing in Drosophila and fission yeast and in programmed DNA elimination in Tetrahymena. We cloned ARGONAUTE4 (AGO4) from a screen for mutants that suppress silencing of the Arabidopsis SUPERMAN (SUP) gene. The ago4-1 mutant reactivated silent SUP alleles and decreased CpNpG and asymmetric DNA methylation as well as histone H3 lysine-9 methylation. In addition, ago4-1 blocked histone and DNA methylation and the accumulation of 25-nucleotide small interfering RNAs (siRNAs) that correspond to the retroelement AtSN1. These results suggest that AGO4 and long siRNAs direct chromatin modifications, including histone methylation and non-CpG DNA methylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zilberman, Daniel -- Cao, Xiaofeng -- Jacobsen, Steven E -- GM07185/GM/NIGMS NIH HHS/ -- GM60398/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Jan 31;299(5607):716-9. Epub 2003 Jan 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cell, and Developmental Biology, Molecular Biology Institute, University of California, Los Angeles, CA 90095-1606.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12522258" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Arabidopsis/genetics/*metabolism ; Arabidopsis Proteins/chemistry/*genetics/*metabolism ; Argonaute Proteins ; Cloning, Molecular ; *DNA Methylation ; DNA, Plant/metabolism ; DNA-Cytosine Methylases/genetics/metabolism ; Dinucleoside Phosphates/metabolism ; Gene Silencing ; Genes, Plant ; Genes, Suppressor ; Histone-Lysine N-Methyltransferase ; Histones/*metabolism ; Methylation ; Methyltransferases/genetics/metabolism ; Mutation ; RNA, Plant/metabolism ; RNA, Small Interfering/*metabolism ; Retroelements ; Suppression, Genetic ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2001-08-04
    Description: Myotonic dystrophy (DM), the most common form of muscular dystrophy in adults, can be caused by a mutation on either chromosome 19q13 (DM1) or 3q21 (DM2/PROMM). DM1 is caused by a CTG expansion in the 3' untranslated region of the dystrophia myotonica-protein kinase gene (DMPK). Several mechanisms have been invoked to explain how this mutation, which does not alter the protein-coding portion of a gene, causes the specific constellation of clinical features characteristic of DM. We now report that DM2 is caused by a CCTG expansion (mean approximately 5000 repeats) located in intron 1 of the zinc finger protein 9 (ZNF9) gene. Parallels between these mutations indicate that microsatellite expansions in RNA can be pathogenic and cause the multisystemic features of DM1 and DM2.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liquori, C L -- Ricker, K -- Moseley, M L -- Jacobsen, J F -- Kress, W -- Naylor, S L -- Day, J W -- Ranum, L P -- CA56266/CA/NCI NIH HHS/ -- HG002051/HG/NHGRI NIH HHS/ -- NS35870/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 3;293(5531):864-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Human Genetics; MMC 206, 420 Delaware Street SE, University of Minnesota, Minneapolis, MN 55455, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11486088" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Blotting, Southern ; Chromosome Mapping ; Chromosomes, Human, Pair 3/genetics ; DNA-Binding Proteins/chemistry/*genetics/metabolism ; Diseases in Twins/genetics ; Female ; Humans ; In Situ Hybridization, Fluorescence ; *Introns ; Linkage Disequilibrium ; Lod Score ; Male ; *Microsatellite Repeats ; Muscles/metabolism ; Mutation ; Myotonic Dystrophy/*genetics/metabolism ; Phenotype ; Polymerase Chain Reaction ; RNA, Messenger/genetics/metabolism ; RNA-Binding Proteins/chemistry/*genetics/metabolism ; Twins, Monozygotic ; *Zinc Fingers/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-08-22
    Description: Mutations in the SUPERMAN gene affect flower development in Arabidopsis. Seven heritable but unstable sup epi-alleles (the clark kent alleles) are associated with nearly identical patterns of excess cytosine methylation within the SUP gene and a decreased level of SUP RNA. Revertants of these alleles are largely demethylated at the SUP locus and have restored levels of SUP RNA. A transgenic Arabidopsis line carrying an antisense methyltransferase gene, which shows an overall decrease in genomic cytosine methylation, also contains a hypermethylated sup allele. Thus, disruption of methylation systems may yield more complex outcomes than expected and can result in methylation defects at known genes. The clark kent alleles differ from the antisense line because they do not show a general decrease in genomic methylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jacobsen, S E -- Meyerowitz, E M -- New York, N.Y. -- Science. 1997 Aug 22;277(5329):1100-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9262479" target="_blank"〉PubMed〈/a〉
    Keywords: *Alleles ; Arabidopsis/*genetics/growth & development/metabolism ; *Arabidopsis Proteins ; Base Sequence ; Crosses, Genetic ; Cytosine/metabolism ; DNA (Cytosine-5-)-Methyltransferase/genetics ; *DNA Methylation ; DNA, Antisense ; DNA, Plant/metabolism ; Gene Expression Regulation, Plant ; *Genes, Plant ; Genetic Complementation Test ; Molecular Sequence Data ; Mutation ; Phenotype ; Plants, Genetically Modified ; RNA, Messenger/metabolism ; RNA, Plant/metabolism ; Transcription Factors/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-07-16
    Description: Multiple pathways prevent DNA replication from occurring more than once per cell cycle. These pathways block re-replication by strictly controlling the activity of pre-replication complexes, which assemble at specific sites in the genome called origins. Here we show that mutations in the homologous histone 3 lysine 27 (H3K27) monomethyltransferases, ARABIDOPSIS TRITHORAX-RELATED PROTEIN5 (ATXR5) and ATXR6, lead to re-replication of specific genomic locations. Most of these locations correspond to transposons and other repetitive and silent elements of the Arabidopsis genome. These sites also correspond to high levels of H3K27 monomethylation, and mutation of the catalytic SET domain is sufficient to cause the re-replication defect. Mutation of ATXR5 and ATXR6 also causes upregulation of transposon expression and has pleiotropic effects on plant development. These results uncover a novel pathway that prevents over-replication of heterochromatin in Arabidopsis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964344/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964344/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jacob, Yannick -- Stroud, Hume -- Leblanc, Chantal -- Feng, Suhua -- Zhuo, Luting -- Caro, Elena -- Hassel, Christiane -- Gutierrez, Crisanto -- Michaels, Scott D -- Jacobsen, Steven E -- GM075060/GM/NIGMS NIH HHS/ -- R01 GM075060/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Aug 19;466(7309):987-91. doi: 10.1038/nature09290. Epub 2010 Jul 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Indiana University, 915 East Third Street, Bloomington, Indiana 47405, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20631708" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; *Arabidopsis/cytology/enzymology/genetics ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Catalytic Domain/genetics ; DNA Methylation ; DNA Replication/genetics/*physiology ; DNA Transposable Elements/genetics ; DNA, Plant/analysis/biosynthesis ; Gene Expression Regulation, Plant ; Gene Silencing ; Genome, Plant/genetics ; Heterochromatin/*genetics/metabolism ; Histone-Lysine N-Methyltransferase/*metabolism ; Histones/chemistry/*metabolism ; Lysine/metabolism ; Methylation ; Methyltransferases/chemistry/genetics/*metabolism ; Mutant Proteins/genetics/metabolism ; Mutation ; Replication Origin
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-02-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chan, Simon W-L -- Zilberman, Daniel -- Xie, Zhixin -- Johansen, Lisa K -- Carrington, James C -- Jacobsen, Steven E -- GM60398/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Feb 27;303(5662):1336.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of MCD Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14988555" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*genetics/growth & development ; Arabidopsis Proteins/*genetics/physiology ; Argonaute Proteins ; Cytosine/metabolism ; *DNA Methylation ; DNA, Plant/metabolism ; Flowers/growth & development ; *Genes, Plant ; Homeodomain Proteins/*genetics ; Mutation ; *RNA Interference ; RNA, Small Interfering/metabolism ; Repetitive Sequences, Nucleic Acid ; Transcription Factors/*genetics ; Transformation, Genetic ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2003-11-25
    Description: The Arabidopsis FWA gene was initially identified from late-flowering epigenetic mutants that show ectopic FWA expression associated with heritable hypomethylation of repeats around transcription starting sites. Here, we show that wild-type FWA displays imprinted (maternal origin-specific) expression in endosperm. The FWA imprint depends on the maintenance DNA methyltransferase MET1, as is the case in mammals. Unlike mammals, however, the FWA imprint is not established by allele-specific de novo methylation. It is established by maternal gametophyte-specific gene activation, which depends on a DNA glycosylase gene, DEMETER. Because endosperm does not contribute to the next generation, the activated FWA gene need not be silenced again. Double fertilization enables plants to use such "one-way" control of imprinting and DNA methylation in endosperm.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kinoshita, Tetsu -- Miura, Asuka -- Choi, Yeonhee -- Kinoshita, Yuki -- Cao, Xiaofeng -- Jacobsen, Steven E -- Fischer, Robert L -- Kakutani, Tetsuji -- GM60398/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jan 23;303(5657):521-3. Epub 2003 Nov 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan. tekinosh@lab.nig.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14631047" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Arabidopsis/*genetics/growth & development/metabolism ; Arabidopsis Proteins/*genetics/metabolism ; DNA (Cytosine-5-)-Methyltransferase/metabolism ; *DNA Methylation ; DNA, Plant/genetics/metabolism ; DNA-Cytosine Methylases/genetics/metabolism ; *Gene Expression Regulation, Plant ; Gene Silencing ; *Genomic Imprinting ; Homeodomain Proteins/*genetics/metabolism ; Methyltransferases/genetics/metabolism ; Mutation ; N-Glycosyl Hydrolases/genetics/metabolism ; Pollen ; Recombinant Fusion Proteins/metabolism ; Repetitive Sequences, Nucleic Acid ; Reverse Transcriptase Polymerase Chain Reaction ; Seeds/*genetics/metabolism ; Trans-Activators/genetics/metabolism ; Transcription Factors/*genetics/metabolism ; Transcription, Genetic ; Transcriptional Activation ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-05-03
    Description: DNA methylation is an epigenetic modification that has critical roles in gene silencing, development and genome integrity. In Arabidopsis, DNA methylation is established by DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) and targeted by 24-nucleotide small interfering RNAs (siRNAs) through a pathway termed RNA-directed DNA methylation (RdDM). This pathway requires two plant-specific RNA polymerases: Pol-IV, which functions to initiate siRNA biogenesis, and Pol-V, which functions to generate scaffold transcripts that recruit downstream RdDM factors. To understand the mechanisms controlling Pol-IV targeting we investigated the function of SAWADEE HOMEODOMAIN HOMOLOG 1 (SHH1), a Pol-IV-interacting protein. Here we show that SHH1 acts upstream in the RdDM pathway to enable siRNA production from a large subset of the most active RdDM targets, and that SHH1 is required for Pol-IV occupancy at these same loci. We also show that the SHH1 SAWADEE domain is a novel chromatin-binding module that adopts a unique tandem Tudor-like fold and functions as a dual lysine reader, probing for both unmethylated K4 and methylated K9 modifications on the histone 3 (H3) tail. Finally, we show that key residues within both lysine-binding pockets of SHH1 are required in vivo to maintain siRNA and DNA methylation levels as well as Pol-IV occupancy at RdDM targets, demonstrating a central role for methylated H3K9 binding in SHH1 function and providing the first insights into the mechanism of Pol-IV targeting. Given the parallels between methylation systems in plants and mammals, a further understanding of this early targeting step may aid our ability to control the expression of endogenous and newly introduced genes, which has broad implications for agriculture and gene therapy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4119789/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4119789/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Law, Julie A -- Du, Jiamu -- Hale, Christopher J -- Feng, Suhua -- Krajewski, Krzysztof -- Palanca, Ana Marie S -- Strahl, Brian D -- Patel, Dinshaw J -- Jacobsen, Steven E -- GM60398/GM/NIGMS NIH HHS/ -- GM85394/GM/NIGMS NIH HHS/ -- R01 GM060398/GM/NIGMS NIH HHS/ -- R37 GM060398/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Jun 20;498(7454):385-9. doi: 10.1038/nature12178. Epub 2013 May 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23636332" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*enzymology/genetics/*metabolism ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Binding Sites/genetics ; Chromatin/chemistry/genetics/metabolism ; Crystallography, X-Ray ; DNA Methylation/*genetics ; DNA-Directed RNA Polymerases/genetics/*metabolism ; Epigenesis, Genetic/genetics ; Histones/chemistry/metabolism ; Homeodomain Proteins/chemistry/*metabolism ; Lysine/chemistry/metabolism ; Methyltransferases/genetics/metabolism ; Models, Molecular ; Mutation ; Protein Folding ; Protein Structure, Tertiary ; RNA, Small Interfering/biosynthesis/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-01-21
    Description: The sequence and the structure of DNA methyltransferase-2 (Dnmt2) bear close affinities to authentic DNA cytosine methyltransferases. A combined genetic and biochemical approach revealed that human DNMT2 did not methylate DNA but instead methylated a small RNA; mass spectrometry showed that this RNA is aspartic acid transfer RNA (tRNA(Asp)) and that DNMT2 specifically methylated cytosine 38 in the anticodon loop. The function of DNMT2 is highly conserved, and human DNMT2 protein restored methylation in vitro to tRNA(Asp) from Dnmt2-deficient strains of mouse, Arabidopsis thaliana, and Drosophila melanogaster in a manner that was dependent on preexisting patterns of modified nucleosides. Indirect sequence recognition is also a feature of eukaryotic DNA methyltransferases, which may have arisen from a Dnmt2-like RNA methyltransferase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goll, Mary Grace -- Kirpekar, Finn -- Maggert, Keith A -- Yoder, Jeffrey A -- Hsieh, Chih-Lin -- Zhang, Xiaoyu -- Golic, Kent G -- Jacobsen, Steven E -- Bestor, Timothy H -- New York, N.Y. -- Science. 2006 Jan 20;311(5759):395-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16424344" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anticodon ; Arabidopsis/genetics/physiology ; Arabidopsis Proteins/genetics ; Catalytic Domain ; Cytosine/metabolism ; DNA (Cytosine-5-)-Methyltransferase/chemistry/genetics/*metabolism ; Drosophila Proteins/genetics ; Drosophila melanogaster/genetics/physiology ; Evolution, Molecular ; Humans ; Mass Spectrometry ; Methylation ; Mice ; Mutation ; NIH 3T3 Cells ; RNA, Plant/metabolism ; RNA, Transfer, Asp/chemistry/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...