ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Economic theory 14 (1999), S. 729-740 
    ISSN: 1432-0479
    Keywords: Keywords and Phrases: Monetary policy design, Inflation, Anticipated policies, Overlapping generation model, Indeterminacy, Feedback rules. ; JEL Classification Numbers: E31, E50, E52, E58.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Economics
    Notes: Summary. This paper analyzes how monetary policy in an overlapping generations model can be designed to avoid inflationary consequences of anticipated changes of monetary policies. Avoiding these inflationary consequences will require a once and for all increase (decrease) in monetary growth immediately before the policy switch takes place if the relative risk aversion is greater (less) than unity. If the relative risk aversion is greater than unity, the avoidance of inflationary consequences is also time-consistent. Moreover, a general monetary feedback rule ensures that the economy picks the steady state with the lowest inflation rate. Our results suggest that the difference between unanticipated and anticipated policy switches may not be as important as generally assumed, because the consequences of the latter can be neutralized.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-01-02
    Description: Duchenne muscular dystrophy (DMD) is a devastating disease affecting about 1 out of 5000 male births and caused by mutations in the dystrophin gene. Genome editing has the potential to restore expression of a modified dystrophin gene from the native locus to modulate disease progression. In this study, adeno-associated virus was used to deliver the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system to the mdx mouse model of DMD to remove the mutated exon 23 from the dystrophin gene. This includes local and systemic delivery to adult mice and systemic delivery to neonatal mice. Exon 23 deletion by CRISPR-Cas9 resulted in expression of the modified dystrophin gene, partial recovery of functional dystrophin protein in skeletal myofibers and cardiac muscle, improvement of muscle biochemistry, and significant enhancement of muscle force. This work establishes CRISPR-Cas9-based genome editing as a potential therapy to treat DMD.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nelson, Christopher E -- Hakim, Chady H -- Ousterout, David G -- Thakore, Pratiksha I -- Moreb, Eirik A -- Castellanos Rivera, Ruth M -- Madhavan, Sarina -- Pan, Xiufang -- Ran, F Ann -- Yan, Winston X -- Asokan, Aravind -- Zhang, Feng -- Duan, Dongsheng -- Gersbach, Charles A -- DP1-MH100706/DP/NCCDPHP CDC HHS/ -- DP2-OD008586/OD/NIH HHS/ -- P01HL112761/HL/NHLBI NIH HHS/ -- R01DK097768/DK/NIDDK NIH HHS/ -- R01HL089221/HL/NHLBI NIH HHS/ -- R01NS90634/NS/NINDS NIH HHS/ -- T32GM007753/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2016 Jan 22;351(6271):403-7. doi: 10.1126/science.aad5143. Epub 2015 Dec 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biomedical Engineering, Duke University, Durham, NC, USA. Center for Genomic and Computational Biology, Duke University, Durham, NC, USA. ; Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA. ; Gene Therapy Center, Departments of Genetics, Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA, USA. Society of Fellows, Harvard University, Cambridge, MA, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA, USA. Graduate Program in Biophysics, Harvard Medical School, Boston, MA, USA. Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA, USA. McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA. Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. ; Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA. Department of Neurology, University of Missouri, Columbia, MO, USA. ; Department of Biomedical Engineering, Duke University, Durham, NC, USA. Center for Genomic and Computational Biology, Duke University, Durham, NC, USA. Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA. charles.gersbach@duke.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26721684" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *CRISPR-Cas Systems ; Clustered Regularly Interspaced Short Palindromic Repeats ; Dependovirus ; Disease Models, Animal ; Dystrophin/*genetics ; Exons/*genetics ; Genetic Therapy/*methods ; Male ; Mice ; Mice, Inbred mdx ; Muscle, Skeletal/*metabolism ; Muscular Dystrophy, Duchenne/genetics/*therapy ; Sequence Deletion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...