ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-01-02
    Description: Duchenne muscular dystrophy (DMD) is a devastating disease affecting about 1 out of 5000 male births and caused by mutations in the dystrophin gene. Genome editing has the potential to restore expression of a modified dystrophin gene from the native locus to modulate disease progression. In this study, adeno-associated virus was used to deliver the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system to the mdx mouse model of DMD to remove the mutated exon 23 from the dystrophin gene. This includes local and systemic delivery to adult mice and systemic delivery to neonatal mice. Exon 23 deletion by CRISPR-Cas9 resulted in expression of the modified dystrophin gene, partial recovery of functional dystrophin protein in skeletal myofibers and cardiac muscle, improvement of muscle biochemistry, and significant enhancement of muscle force. This work establishes CRISPR-Cas9-based genome editing as a potential therapy to treat DMD.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nelson, Christopher E -- Hakim, Chady H -- Ousterout, David G -- Thakore, Pratiksha I -- Moreb, Eirik A -- Castellanos Rivera, Ruth M -- Madhavan, Sarina -- Pan, Xiufang -- Ran, F Ann -- Yan, Winston X -- Asokan, Aravind -- Zhang, Feng -- Duan, Dongsheng -- Gersbach, Charles A -- DP1-MH100706/DP/NCCDPHP CDC HHS/ -- DP2-OD008586/OD/NIH HHS/ -- P01HL112761/HL/NHLBI NIH HHS/ -- R01DK097768/DK/NIDDK NIH HHS/ -- R01HL089221/HL/NHLBI NIH HHS/ -- R01NS90634/NS/NINDS NIH HHS/ -- T32GM007753/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2016 Jan 22;351(6271):403-7. doi: 10.1126/science.aad5143. Epub 2015 Dec 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biomedical Engineering, Duke University, Durham, NC, USA. Center for Genomic and Computational Biology, Duke University, Durham, NC, USA. ; Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA. ; Gene Therapy Center, Departments of Genetics, Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA, USA. Society of Fellows, Harvard University, Cambridge, MA, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA, USA. Graduate Program in Biophysics, Harvard Medical School, Boston, MA, USA. Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA, USA. McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA. Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. ; Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA. Department of Neurology, University of Missouri, Columbia, MO, USA. ; Department of Biomedical Engineering, Duke University, Durham, NC, USA. Center for Genomic and Computational Biology, Duke University, Durham, NC, USA. Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA. charles.gersbach@duke.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26721684" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *CRISPR-Cas Systems ; Clustered Regularly Interspaced Short Palindromic Repeats ; Dependovirus ; Disease Models, Animal ; Dystrophin/*genetics ; Exons/*genetics ; Genetic Therapy/*methods ; Male ; Mice ; Mice, Inbred mdx ; Muscle, Skeletal/*metabolism ; Muscular Dystrophy, Duchenne/genetics/*therapy ; Sequence Deletion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-09-25
    Description: The ultimate goal of muscular dystrophy gene therapy is to treat all muscles in the body. Global gene delivery was demonstrated in dystrophic mice more than a decade ago using adeno-associated virus (AAV). However, translation to affected large mammals has been challenging. The only reported attempt was performed in newborn Duchenne muscular dystrophy (DMD) dogs. Unfortunately, AAV injection resulted in growth delay, muscle atrophy and contracture. Here we report safe and bodywide AAV delivery in juvenile DMD dogs. Three ~2-m-old affected dogs received intravenous injection of a tyrosine-engineered AAV-9 reporter or micro-dystrophin (μDys) vector at the doses of 1.92–6.24 x 10 14 viral genome particles/kg under transient or sustained immune suppression. DMD dogs tolerated injection well and their growth was not altered. Hematology and blood biochemistry were unremarkable. No adverse reactions were observed. Widespread muscle transduction was seen in skeletal muscle, the diaphragm and heart for at least 4 months (the end of the study). Nominal expression was detected in internal organs. Improvement in muscle histology was observed in μDys-treated dogs. In summary, systemic AAV gene transfer is safe and efficient in young adult dystrophic large mammals. This may translate to bodywide gene therapy in pediatric patients in the future.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-23
    Description: Neuronal nitric oxide synthase (nNOS) membrane delocalization contributes to the pathogenesis of Duchenne muscular dystrophy (DMD) by promoting functional muscle ischemia and exacerbating muscle injury during exercise. We have previously shown that supra-physiological expression of nNOS-binding mini-dystrophin restores normal blood flow regulation and prevents functional ischemia in transgenic mdx mice, a DMD model. A critical next issue is whether systemic dual adeno-associated virus (AAV) gene therapy can restore nNOS-binding mini-dystrophin expression and mitigate muscle activity-related functional ischemia and injury. Here, we performed systemic gene transfer in mdx and mdx4cv mice using a pair of dual AAV vectors that expressed a 6 kb nNOS-binding mini-dystrophin gene. Vectors were packaged in tyrosine mutant AAV-9 and co-injected (5 x 10 12 viral genome particles/vector/mouse) via the tail vein to 1-month-old dystrophin-null mice. Four months later, we observed 30–50% mini-dystrophin positive myofibers in limb muscles. Treatment ameliorated histopathology, increased muscle force and protected against eccentric contraction-induced injury. Importantly, dual AAV therapy successfully prevented chronic exercise-induced muscle force drop. Doppler hemodynamic assay further showed that therapy attenuated adrenergic vasoconstriction in contracting muscle. Our results suggest that partial transduction can still ameliorate nNOS delocalization-associated functional deficiency. Further evaluation of nNOS binding mini-dystrophin dual AAV vectors is warranted in dystrophic dogs and eventually in human patients.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...