ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-10-29
    Description: The plant SLAC1 anion channel controls turgor pressure in the aperture-defining guard cells of plant stomata, thereby regulating the exchange of water vapour and photosynthetic gases in response to environmental signals such as drought or high levels of carbon dioxide. Here we determine the crystal structure of a bacterial homologue (Haemophilus influenzae) of SLAC1 at 1.20 A resolution, and use structure-inspired mutagenesis to analyse the conductance properties of SLAC1 channels. SLAC1 is a symmetrical trimer composed from quasi-symmetrical subunits, each having ten transmembrane helices arranged from helical hairpin pairs to form a central five-helix transmembrane pore that is gated by an extremely conserved phenylalanine residue. Conformational features indicate a mechanism for control of gating by kinase activation, and electrostatic features of the pore coupled with electrophysiological characteristics indicate that selectivity among different anions is largely a function of the energetic cost of ion dehydration.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548404/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548404/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Yu-Hang -- Hu, Lei -- Punta, Marco -- Bruni, Renato -- Hillerich, Brandan -- Kloss, Brian -- Rost, Burkhard -- Love, James -- Siegelbaum, Steven A -- Hendrickson, Wayne A -- R01 GM034102/GM/NIGMS NIH HHS/ -- U54 GM075026/GM/NIGMS NIH HHS/ -- U54 GM095315/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Oct 28;467(7319):1074-80. doi: 10.1038/nature09487.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20981093" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Arabidopsis/genetics/metabolism ; Arabidopsis Proteins/*chemistry ; Bacterial Proteins/*chemistry/genetics/metabolism ; Crystallography, X-Ray ; Electric Conductivity ; Haemophilus influenzae/*chemistry/genetics ; Ion Channel Gating ; Membrane Proteins/*chemistry ; Models, Molecular ; Molecular Sequence Data ; Oocytes/metabolism ; Phenylalanine/chemistry/metabolism ; Plant Stomata/*metabolism ; Static Electricity ; *Structural Homology, Protein ; Substrate Specificity ; Xenopus laevis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-12-10
    Description: Bile acids are synthesized from cholesterol in hepatocytes and secreted through the biliary tract into the small intestine, where they aid in absorption of lipids and fat-soluble vitamins. Through a process known as enterohepatic recirculation, more than 90% of secreted bile acids are then retrieved from the intestine and returned to the liver for resecretion. In humans, there are two Na(+)-dependent bile acid transporters involved in enterohepatic recirculation, the Na(+)-taurocholate co-transporting polypeptide (NTCP; also known as SLC10A1) expressed in hepatocytes, and the apical sodium-dependent bile acid transporter (ASBT; also known as SLC10A2) expressed on enterocytes in the terminal ileum. In recent years, ASBT has attracted much interest as a potential drug target for treatment of hypercholesterolaemia, because inhibition of ASBT reduces reabsorption of bile acids, thus increasing bile acid synthesis and consequently cholesterol consumption. However, a lack of three-dimensional structures of bile acid transporters hampers our ability to understand the molecular mechanisms of substrate selectivity and transport, and to interpret the wealth of existing functional data. The crystal structure of an ASBT homologue from Neisseria meningitidis (ASBT(NM)) in detergent was reported recently, showing the protein in an inward-open conformation bound to two Na(+) and a taurocholic acid. However, the structural changes that bring bile acid and Na(+) across the membrane are difficult to infer from a single structure. To understand the structural changes associated with the coupled transport of Na(+) and bile acids, here we solved two structures of an ASBT homologue from Yersinia frederiksenii (ASBTYf) in a lipid environment, which reveal that a large rigid-body rotation of a substrate-binding domain gives the conserved 'crossover' region, where two discontinuous helices cross each other, alternating accessibility from either side of the cell membrane. This result has implications for the location and orientation of the bile acid during transport, as well as for the translocation pathway for Na(+).〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142352/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142352/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Xiaoming -- Levin, Elena J -- Pan, Yaping -- McCoy, Jason G -- Sharma, Ruchika -- Kloss, Brian -- Bruni, Renato -- Quick, Matthias -- Zhou, Ming -- R01 DK088057/DK/NIDDK NIH HHS/ -- R01 GM098878/GM/NIGMS NIH HHS/ -- R01DK088057/DK/NIDDK NIH HHS/ -- R01GM098878/GM/NIGMS NIH HHS/ -- U54 GM075026/GM/NIGMS NIH HHS/ -- U54 GM087519/GM/NIGMS NIH HHS/ -- U54 GM095315/GM/NIGMS NIH HHS/ -- U54GM087519/GM/NIGMS NIH HHS/ -- U54GM095315/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Jan 23;505(7484):569-73. doi: 10.1038/nature12811. Epub 2013 Dec 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA [2] Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA [3]. ; 1] Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA [2]. ; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA. ; Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA. ; New York Consortium on Membrane Protein Structure, New York, New York 10027, USA. ; 1] Department of Psychiatry and Center for Molecular Recognition, Columbia University, New York, New York 10032, USA [2] New York State Psychiatric Institute, Division of Molecular Therapeutics, New York, New York 10032, USA. ; 1] Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA [2] Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA [3] Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24317697" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/*metabolism ; Bile Acids and Salts/metabolism ; Biological Transport ; Carrier Proteins/*chemistry/*metabolism ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Membrane Glycoproteins/*chemistry/*metabolism ; Models, Molecular ; Protein Conformation ; Reproducibility of Results ; Rotation ; Sodium/metabolism ; Structure-Activity Relationship ; Yersinia/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-02-15
    Description: The TrkH/TrkG/KtrB proteins mediate K(+) uptake in bacteria and probably evolved from simple K(+) channels by multiple gene duplications or fusions. Here we present the crystal structure of a TrkH from Vibrio parahaemolyticus. TrkH is a homodimer, and each protomer contains an ion permeation pathway. A selectivity filter, similar in architecture to those of K(+) channels but significantly shorter, is lined by backbone and side-chain oxygen atoms. Functional studies showed that TrkH is selective for permeation of K(+) and Rb(+) over smaller ions such as Na(+) or Li(+). Immediately intracellular to the selectivity filter are an intramembrane loop and an arginine residue, both highly conserved, which constrict the permeation pathway. Substituting the arginine with an alanine significantly increases the rate of K(+) flux. These results reveal the molecular basis of K(+) selectivity and suggest a novel gating mechanism for this large and important family of membrane transport proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077569/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077569/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cao, Yu -- Jin, Xiangshu -- Huang, Hua -- Derebe, Mehabaw Getahun -- Levin, Elena J -- Kabaleeswaran, Venkataraman -- Pan, Yaping -- Punta, Marco -- Love, James -- Weng, Jun -- Quick, Matthias -- Ye, Sheng -- Kloss, Brian -- Bruni, Renato -- Martinez-Hackert, Erik -- Hendrickson, Wayne A -- Rost, Burkhard -- Javitch, Jonathan A -- Rajashankar, Kanagalaghatta R -- Jiang, Youxing -- Zhou, Ming -- DK088057/DK/NIDDK NIH HHS/ -- GM05026/GM/NIGMS NIH HHS/ -- GM05026-SUB0007/GM/NIGMS NIH HHS/ -- HL086392/HL/NHLBI NIH HHS/ -- K05 DA022413/DA/NIDA NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 DK088057/DK/NIDDK NIH HHS/ -- R01 DK088057-01/DK/NIDDK NIH HHS/ -- R01 HL086392/HL/NHLBI NIH HHS/ -- R01 HL086392-05/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Mar 17;471(7338):336-40. doi: 10.1038/nature09731. Epub 2011 Feb 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology & Cellular Biophysics, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21317882" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/chemistry ; Amino Acid Sequence ; Crystallography, X-Ray ; Escherichia coli Proteins/chemistry ; Ion Channel Gating ; Ion Transport ; Models, Molecular ; Molecular Sequence Data ; Potassium/metabolism ; Potassium Channels/*chemistry/*metabolism ; Structure-Activity Relationship ; Substrate Specificity ; Vibrio parahaemolyticus/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-06-07
    Description: Calcium homeostasis balances passive calcium leak and active calcium uptake. Human Bax inhibitor-1 (hBI-1) is an antiapoptotic protein that mediates a calcium leak and is representative of a highly conserved and widely distributed family, the transmembrane Bax inhibitor motif (TMBIM) proteins. Here, we present crystal structures of a bacterial homolog and characterize its calcium leak activity. The structure has a seven-transmembrane-helix fold that features two triple-helix sandwiches wrapped around a central C-terminal helix. Structures obtained in closed and open conformations are reversibly interconvertible by change of pH. A hydrogen-bonded, pKa (where Ka is the acid dissociation constant)-perturbed pair of conserved aspartate residues explains the pH dependence of this transition, and biochemical studies show that pH regulates calcium influx in proteoliposomes. Homology models for hBI-1 provide insights into TMBIM-mediated calcium leak and cytoprotective activity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4119810/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4119810/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, Yanqi -- Bruni, Renato -- Kloss, Brian -- Assur, Zahra -- Kloppmann, Edda -- Rost, Burkhard -- Hendrickson, Wayne A -- Liu, Qun -- GM095315/GM/NIGMS NIH HHS/ -- GM107462/GM/NIGMS NIH HHS/ -- R01 GM107462/GM/NIGMS NIH HHS/ -- U54 GM095315/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Jun 6;344(6188):1131-5. doi: 10.1126/science.1252043.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY 10027, USA. ; Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA. ; New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY 10027, USA. Department of Bioinformatics and Computational Biology, Fakultat fur Informatik, Technische Universitat Munchen, Garching, Germany. ; New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY 10027, USA. Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA. New York Structural Biology Center, National Synchrotron Light Source (NSLS) X4, Brookhaven National Laboratory, Upton, NY 11973, USA. Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. ; New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY 10027, USA. New York Structural Biology Center, National Synchrotron Light Source (NSLS) X4, Brookhaven National Laboratory, Upton, NY 11973, USA. qunliu@bnl.gov.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24904158" target="_blank"〉PubMed〈/a〉
    Keywords: Bacillus subtilis/*metabolism ; Bacterial Proteins/*chemistry/metabolism ; Calcium/*metabolism ; Cell Membrane/*metabolism ; Crystallography, X-Ray ; Humans ; Hydrogen-Ion Concentration ; Membrane Proteins/*chemistry/metabolism ; Models, Molecular ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...