ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-04-03
    Description: CRM1 (also known as XPO1 and exportin 1) mediates nuclear export of hundreds of proteins through the recognition of the leucine-rich nuclear export signal (LR-NES). Here we present the 2.9 A structure of CRM1 bound to snurportin 1 (SNUPN). Snurportin 1 binds CRM1 in a bipartite manner by means of an amino-terminal LR-NES and its nucleotide-binding domain. The LR-NES is a combined alpha-helical-extended structure that occupies a hydrophobic groove between two CRM1 outer helices. The LR-NES interface explains the consensus hydrophobic pattern, preference for intervening electronegative residues and inhibition by leptomycin B. The second nuclear export signal epitope is a basic surface on the snurportin 1 nucleotide-binding domain, which binds an acidic patch on CRM1 adjacent to the LR-NES site. Multipartite recognition of individually weak nuclear export signal epitopes may be common to CRM1 substrates, enhancing CRM1 binding beyond the generally low affinity LR-NES. Similar energetic construction is also used in multipartite nuclear localization signals to provide broad substrate specificity and rapid evolution in nuclear transport.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3437623/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3437623/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dong, Xiuhua -- Biswas, Anindita -- Suel, Katherine E -- Jackson, Laurie K -- Martinez, Rita -- Gu, Hongmei -- Chook, Yuh Min -- 5-T32-GM008297/GM/NIGMS NIH HHS/ -- R01 GM069909/GM/NIGMS NIH HHS/ -- R01GM069909/GM/NIGMS NIH HHS/ -- R01GM069909-03S1/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Apr 30;458(7242):1136-41. doi: 10.1038/nature07975. Epub 2009 Apr 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park, Dallas, Texas 75390-9041, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19339969" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Crystallography, X-Ray ; Epitopes ; Fatty Acids, Unsaturated/pharmacology ; Humans ; Hydrophobic and Hydrophilic Interactions ; Karyopherins/*chemistry/*metabolism ; Leucine/*metabolism ; Models, Molecular ; Nuclear Export Signals/*physiology ; Protein Binding/drug effects ; Protein Conformation ; Receptors, Cytoplasmic and Nuclear/*chemistry/*metabolism ; Structure-Activity Relationship ; Substrate Specificity ; snRNP Core Proteins/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-07-22
    Description: CorA family members are ubiquitously distributed transporters of divalent metal cations and are considered to be the primary Mg2+ transporter of Bacteria and Archaea. We have determined a 2.9 angstrom resolution structure of CorA from Thermotoga maritima that reveals a pentameric cone-shaped protein. Two potential regulatory metal binding sites are found in the N-terminal domain that bind both Mg2+ and Co2+. The structure of CorA supports an efflux system involving dehydration and rehydration of divalent metal ions potentially mediated by a ring of conserved aspartate residues at the cytoplasmic entrance and a carbonyl funnel at the periplasmic side of the pore.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eshaghi, Said -- Niegowski, Damian -- Kohl, Andreas -- Martinez Molina, Daniel -- Lesley, Scott A -- Nordlund, Par -- New York, N.Y. -- Science. 2006 Jul 21;313(5785):354-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biophysics, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77 Stockholm, Sweden. Said.Eshaghi@ki.se〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16857941" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/metabolism ; Binding Sites ; Cation Transport Proteins/*chemistry/metabolism ; Chlorides/analysis/metabolism ; Cobalt/chemistry/*metabolism ; Crystallography, X-Ray ; Hydrophobic and Hydrophilic Interactions ; Magnesium/chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Sequence Alignment ; Thermotoga maritima/*chemistry ; Water/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-02-26
    Description: Apical membrane antigen 1 from Plasmodium is a leading malaria vaccine candidate. The protein is essential for host-cell invasion, but its molecular function is unknown. The crystal structure of the three domains comprising the ectoplasmic region of the antigen from P. vivax, solved at 1.8 angstrom resolution, shows that domains I and II belong to the PAN motif, which defines a superfamily of protein folds implicated in receptor binding. We also mapped the epitope of an invasion-inhibitory monoclonal antibody specific for the P. falciparum ortholog and modeled this to the structure. The location of the epitope and current knowledge on structure-function correlations for PAN domains together suggest a receptor-binding role during invasion in which domain II plays a critical part. These results are likely to aid vaccine and drug design.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pizarro, Juan Carlos -- Vulliez-Le Normand, Brigitte -- Chesne-Seck, Marie-Laure -- Collins, Christine R -- Withers-Martinez, Chrislaine -- Hackett, Fiona -- Blackman, Michael J -- Faber, Bart W -- Remarque, Edmond J -- Kocken, Clemens H M -- Thomas, Alan W -- Bentley, Graham A -- MC_U117532063/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2005 Apr 15;308(5720):408-11. Epub 2005 Feb 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Unite d'Immunologie Structurale, Centre National de la Recherche Scientifique, URA 2185, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15731407" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Antibodies, Monoclonal/immunology ; Antigens, Protozoan/*chemistry/immunology ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Epitope Mapping ; Epitopes ; Heparin/metabolism ; Malaria Vaccines ; Membrane Proteins/*chemistry/immunology ; Models, Molecular ; Molecular Sequence Data ; Plasmodium falciparum/chemistry/immunology ; Plasmodium vivax/chemistry/*immunology ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protozoan Proteins/*chemistry/immunology ; Recombinant Proteins/chemistry ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-01-28
    Description: The transition of DNA secondary structure from an analogous B to Z conformation modulates the dielectric environment of the single-walled carbon nanotube (SWNT) around which it is adsorbed. The SWNT band-gap fluorescence undergoes a red shift when an encapsulating 30-nucleotide oligomer is exposed to counter ions that screen the charged backbone. The transition is thermodynamically identical for DNA on and off the nanotube, except that the propagation length of the former is shorter by five-sixths. The magnitude of the energy shift is described by using an effective medium model and the DNA geometry on the nanotube sidewall. We demonstrate the detection of the B-Z change in whole blood, tissue, and from within living mammalian cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heller, Daniel A -- Jeng, Esther S -- Yeung, Tsun-Kwan -- Martinez, Brittany M -- Moll, Anthonie E -- Gastala, Joseph B -- Strano, Michael S -- New York, N.Y. -- Science. 2006 Jan 27;311(5760):508-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16439657" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Absorption ; Adsorption ; Animals ; Cations, Divalent/chemistry ; Chickens ; Circular Dichroism ; DNA/blood/*chemistry ; DNA, Z-Form/blood/*chemistry ; Fluorescence ; Mathematics ; Mercury/analysis ; Mice ; Models, Molecular ; Muscle, Skeletal/chemistry ; *Nanotubes, Carbon ; *Nucleic Acid Conformation ; Oligodeoxyribonucleotides/chemistry ; Spectrometry, Fluorescence ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...