ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-10-02
    Description: Macroautophagy is a process that leads to the bulk degradation of subcellular constituents by producing autophagosomes/autolysosomes. It is believed that Atg5 (ref. 4) and Atg7 (ref. 5) are essential genes for mammalian macroautophagy. Here we show, however, that mouse cells lacking Atg5 or Atg7 can still form autophagosomes/autolysosomes and perform autophagy-mediated protein degradation when subjected to certain stressors. Although lipidation of the microtubule-associated protein light chain 3 (LC3, also known as Map1lc3a) to form LC3-II is generally considered to be a good indicator of macroautophagy, it did not occur during the Atg5/Atg7-independent alternative process of macroautophagy. We also found that this alternative process of macroautophagy was regulated by several autophagic proteins, including Unc-51-like kinase 1 (Ulk1) and beclin 1. Unlike conventional macroautophagy, autophagosomes seemed to be generated in a Rab9-dependent manner by the fusion of isolation membranes with vesicles derived from the trans-Golgi and late endosomes. In vivo, Atg5-independent alternative macroautophagy was detected in several embryonic tissues. It also had a function in clearing mitochondria during erythroid maturation. These results indicate that mammalian macroautophagy can occur through at least two different pathways: an Atg5/Atg7-dependent conventional pathway and an Atg5/Atg7-independent alternative pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nishida, Yuya -- Arakawa, Satoko -- Fujitani, Kenji -- Yamaguchi, Hirofumi -- Mizuta, Takeshi -- Kanaseki, Toku -- Komatsu, Masaaki -- Otsu, Kinya -- Tsujimoto, Yoshihide -- Shimizu, Shigeomi -- England -- Nature. 2009 Oct 1;461(7264):654-8. doi: 10.1038/nature08455.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19794493" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis Regulatory Proteins/metabolism ; Autophagy/drug effects/*physiology ; Etoposide/pharmacology ; Fibroblasts/cytology/drug effects/metabolism ; Food Deprivation ; Mice ; Mice, Knockout ; Microtubule-Associated Proteins/*deficiency/genetics/metabolism ; Phagosomes/drug effects/metabolism ; Phosphatidylinositol 3-Kinases/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; rab GTP-Binding Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-04-23
    Description: Protein synthesis and autophagic degradation are regulated in an opposite manner by mammalian target of rapamycin (mTOR), whereas under certain conditions it would be beneficial if they occurred in unison to handle rapid protein turnover. We observed a distinct cellular compartment at the trans side of the Golgi apparatus, the TOR-autophagy spatial coupling compartment (TASCC), where (auto)lysosomes and mTOR accumulated during Ras-induced senescence. mTOR recruitment to the TASCC was amino acid- and Rag guanosine triphosphatase-dependent, and disruption of mTOR localization to the TASCC suppressed interleukin-6/8 synthesis. TASCC formation was observed during macrophage differentiation and in glomerular podocytes; both displayed increased protein secretion. The spatial coupling of cells' catabolic and anabolic machinery could augment their respective functions and facilitate the mass synthesis of secretory proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3426290/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3426290/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Narita, Masako -- Young, Andrew R J -- Arakawa, Satoko -- Samarajiwa, Shamith A -- Nakashima, Takayuki -- Yoshida, Sei -- Hong, Sungki -- Berry, Lorraine S -- Reichelt, Stefanie -- Ferreira, Manuela -- Tavare, Simon -- Inoki, Ken -- Shimizu, Shigeomi -- Narita, Masashi -- DK083491/DK/NIDDK NIH HHS/ -- R01 DK083491/DK/NIDDK NIH HHS/ -- R01 DK083491-03/DK/NIDDK NIH HHS/ -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2011 May 20;332(6032):966-70. doi: 10.1126/science.1205407. Epub 2011 Apr 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research UK Cambridge Research Institute (CRI), Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21512002" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/metabolism ; Animals ; *Autophagy ; *Cell Aging ; Cell Line ; Cytoplasm/metabolism ; Cytoplasmic Vesicles/*metabolism/ultrastructure ; Endoplasmic Reticulum, Rough/ultrastructure ; Genes, ras ; Golgi Apparatus/ultrastructure ; HL-60 Cells ; Humans ; Interleukin-6/metabolism ; Interleukin-8/metabolism ; Lysosomes/metabolism/ultrastructure ; Mice ; Monomeric GTP-Binding Proteins/genetics/metabolism ; Nocodazole/pharmacology ; Phagosomes/metabolism/ultrastructure ; Phenotype ; Podocytes/metabolism/ultrastructure ; Protein Biosynthesis ; Proteins/*secretion ; TOR Serine-Threonine Kinases/*metabolism ; Vacuoles/ultrastructure ; trans-Golgi Network/metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...