ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-09-02
    Description: Deubiquitinating enzymes (DUBs) remove ubiquitin from conjugated substrates to regulate various cellular processes. The Zn(2+)-dependent DUBs AMSH and AMSH-LP regulate receptor trafficking by specifically cleaving Lys 63-linked polyubiquitin chains from internalized receptors. Here we report the crystal structures of the human AMSH-LP DUB domain alone and in complex with a Lys 63-linked di-ubiquitin at 1.2 A and 1.6 A resolutions, respectively. The AMSH-LP DUB domain consists of a Zn(2+)-coordinating catalytic core and two characteristic insertions, Ins-1 and Ins-2. The distal ubiquitin interacts with Ins-1 and the core, whereas the proximal ubiquitin interacts with Ins-2 and the core. The core and Ins-1 form a catalytic groove that accommodates the Lys 63 side chain of the proximal ubiquitin and the isopeptide-linked carboxy-terminal tail of the distal ubiquitin. This is the first reported structure of a DUB in complex with an isopeptide-linked ubiquitin chain, which reveals the mechanism for Lys 63-linkage-specific deubiquitination by AMSH family members.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sato, Yusuke -- Yoshikawa, Azusa -- Yamagata, Atsushi -- Mimura, Hisatoshi -- Yamashita, Masami -- Ookata, Kayoko -- Nureki, Osamu -- Iwai, Kazuhiro -- Komada, Masayuki -- Fukai, Shuya -- England -- Nature. 2008 Sep 18;455(7211):358-62. doi: 10.1038/nature07254. Epub 2008 Aug 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Laboratory, Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18758443" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Catalysis ; Conserved Sequence ; Crystallography, X-Ray ; Endopeptidases/chemistry/metabolism ; Endosomal Sorting Complexes Required for Transport ; Humans ; Kinetics ; Lysine/*metabolism ; Mice ; Models, Molecular ; Polyubiquitin/*chemistry/genetics/*metabolism ; Protein Structure, Tertiary ; Saccharomyces cerevisiae Proteins/chemistry/metabolism ; Structure-Activity Relationship ; Substrate Specificity ; Ubiquitin Thiolesterase/*chemistry/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-08-13
    Description: Influenza A viruses cause recurrent outbreaks at local or global scale with potentially severe consequences for human health and the global economy. Recently, a new strain of influenza A virus was detected that causes disease in and transmits among humans, probably owing to little or no pre-existing immunity to the new strain. On 11 June 2009 the World Health Organization declared that the infections caused by the new strain had reached pandemic proportion. Characterized as an influenza A virus of the H1N1 subtype, the genomic segments of the new strain were most closely related to swine viruses. Most human infections with swine-origin H1N1 influenza viruses (S-OIVs) seem to be mild; however, a substantial number of hospitalized individuals do not have underlying health issues, attesting to the pathogenic potential of S-OIVs. To achieve a better assessment of the risk posed by the new virus, we characterized one of the first US S-OIV isolates, A/California/04/09 (H1N1; hereafter referred to as CA04), as well as several other S-OIV isolates, in vitro and in vivo. In mice and ferrets, CA04 and other S-OIV isolates tested replicate more efficiently than a currently circulating human H1N1 virus. In addition, CA04 replicates efficiently in non-human primates, causes more severe pathological lesions in the lungs of infected mice, ferrets and non-human primates than a currently circulating human H1N1 virus, and transmits among ferrets. In specific-pathogen-free miniature pigs, CA04 replicates without clinical symptoms. The assessment of human sera from different age groups suggests that infection with human H1N1 viruses antigenically closely related to viruses circulating in 1918 confers neutralizing antibody activity to CA04. Finally, we show that CA04 is sensitive to approved and experimental antiviral drugs, suggesting that these compounds could function as a first line of defence against the recently declared S-OIV pandemic.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748827/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748827/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Itoh, Yasushi -- Shinya, Kyoko -- Kiso, Maki -- Watanabe, Tokiko -- Sakoda, Yoshihiro -- Hatta, Masato -- Muramoto, Yukiko -- Tamura, Daisuke -- Sakai-Tagawa, Yuko -- Noda, Takeshi -- Sakabe, Saori -- Imai, Masaki -- Hatta, Yasuko -- Watanabe, Shinji -- Li, Chengjun -- Yamada, Shinya -- Fujii, Ken -- Murakami, Shin -- Imai, Hirotaka -- Kakugawa, Satoshi -- Ito, Mutsumi -- Takano, Ryo -- Iwatsuki-Horimoto, Kiyoko -- Shimojima, Masayuki -- Horimoto, Taisuke -- Goto, Hideo -- Takahashi, Kei -- Makino, Akiko -- Ishigaki, Hirohito -- Nakayama, Misako -- Okamatsu, Masatoshi -- Takahashi, Kazuo -- Warshauer, David -- Shult, Peter A -- Saito, Reiko -- Suzuki, Hiroshi -- Furuta, Yousuke -- Yamashita, Makoto -- Mitamura, Keiko -- Nakano, Kunio -- Nakamura, Morio -- Brockman-Schneider, Rebecca -- Mitamura, Hiroshi -- Yamazaki, Masahiko -- Sugaya, Norio -- Suresh, M -- Ozawa, Makoto -- Neumann, Gabriele -- Gern, James -- Kida, Hiroshi -- Ogasawara, Kazumasa -- Kawaoka, Yoshihiro -- HHNSN266200700010C/NS/NINDS NIH HHS/ -- HHSN266200700010C/PHS HHS/ -- HHSN272200800060C/AI/NIAID NIH HHS/ -- R01 AI069274/AI/NIAID NIH HHS/ -- R01 AI069274-04/AI/NIAID NIH HHS/ -- U19 AI070503/AI/NIAID NIH HHS/ -- England -- Nature. 2009 Aug 20;460(7258):1021-5. doi: 10.1038/nature08260.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Shiga University of Medical Science, Ohtsu, Shiga 520-2192, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19672242" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Viral/immunology ; Antiviral Agents/pharmacology ; Cell Line ; Dogs ; Female ; Ferrets/virology ; HN Protein/metabolism ; Humans ; Influenza A Virus, H1N1 Subtype/drug effects/enzymology/pathogenicity/*physiology ; Lung/immunology/pathology/virology ; Macaca fascicularis/immunology/virology ; Male ; Mice ; Mice, Inbred BALB C ; Neutralization Tests ; Orthomyxoviridae Infections/immunology/transmission/virology ; Primate Diseases/pathology/virology ; Swine/*virology ; Swine Diseases/pathology/virology ; Swine, Miniature/virology ; Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...