ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2000-02-05
    Description: Small guanosine triphosphatases, typified by the mammalian Ras proteins, play major roles in the regulation of numerous cellular pathways. A subclass of evolutionarily conserved Ras-like proteins was identified, members of which differ from other Ras proteins in containing amino acids at positions 12 and 61 that are similar to those present in the oncogenic forms of Ras. These proteins, kappaB-Ras1 and kappaB-Ras2, interact with the PEST domains of IkappaBalpha and IkappaBbeta [inhibitors of the transcription factor nuclear factor kappa B (NF-kappaB)] and decrease their rate of degradation. In cells, kappaB-Ras proteins are associated only with NF-kappaB:IkappaBbeta complexes and therefore may provide an explanation for the slower rate of degradation of IkappaBbeta compared with IkappaBalpha.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fenwick, C -- Na, S Y -- Voll, R E -- Zhong, H -- Im, S Y -- Lee, J W -- Ghosh, S -- New York, N.Y. -- Science. 2000 Feb 4;287(5454):869-73.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Immunobiology and Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10657303" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Binding Sites ; Cell Line ; Guanosine Triphosphate/metabolism ; Humans ; I-kappa B Proteins/*metabolism ; Mice ; Molecular Sequence Data ; NF-kappa B/metabolism ; Phosphorylation ; Recombinant Fusion Proteins/chemistry/metabolism ; Signal Transduction ; Transcription Factor RelA ; Transfection ; Tumor Necrosis Factor-alpha/metabolism/pharmacology ; Two-Hybrid System Techniques ; ras Proteins/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-07-17
    Description: Impairment of the circadian clock has been associated with numerous disorders, including metabolic disease. Although small molecules that modulate clock function might offer therapeutic approaches to such diseases, only a few compounds have been identified that selectively target core clock proteins. From an unbiased cell-based circadian phenotypic screen, we identified KL001, a small molecule that specifically interacts with cryptochrome (CRY). KL001 prevented ubiquitin-dependent degradation of CRY, resulting in lengthening of the circadian period. In combination with mathematical modeling, our studies using KL001 revealed that CRY1 and CRY2 share a similar functional role in the period regulation. Furthermore, KL001-mediated CRY stabilization inhibited glucagon-induced gluconeogenesis in primary hepatocytes. KL001 thus provides a tool to study the regulation of CRY-dependent physiology and aid development of clock-based therapeutics of diabetes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589997/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589997/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hirota, Tsuyoshi -- Lee, Jae Wook -- St John, Peter C -- Sawa, Mariko -- Iwaisako, Keiko -- Noguchi, Takako -- Pongsawakul, Pagkapol Y -- Sonntag, Tim -- Welsh, David K -- Brenner, David A -- Doyle, Francis J 3rd -- Schultz, Peter G -- Kay, Steve A -- GM074868/GM/NIGMS NIH HHS/ -- GM085764/GM/NIGMS NIH HHS/ -- GM096873/GM/NIGMS NIH HHS/ -- MH051573/MH/NIMH NIH HHS/ -- MH082945/MH/NIMH NIH HHS/ -- P50 GM085764/GM/NIGMS NIH HHS/ -- R01 GM041804/GM/NIGMS NIH HHS/ -- R01 GM074868/GM/NIGMS NIH HHS/ -- R01 GM096873/GM/NIGMS NIH HHS/ -- R01 MH051573/MH/NIMH NIH HHS/ -- R01 MH082945/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2012 Aug 31;337(6098):1094-7. doi: 10.1126/science.1223710. Epub 2012 Jul 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22798407" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Amino Acid Sequence ; Animals ; Carbazoles/chemistry/isolation & purification/*pharmacology ; Cell Line, Tumor ; Circadian Clocks/*drug effects ; Cryptochromes/*agonists/metabolism ; Gluconeogenesis/drug effects/genetics ; Glucose-6-Phosphatase/genetics ; HEK293 Cells ; Hepatocytes/drug effects/metabolism ; Humans ; Liver/cytology/drug effects/metabolism ; Mice ; Molecular Sequence Data ; Phosphoenolpyruvate Carboxykinase (GTP)/genetics ; Protein Stability/drug effects ; Proteolysis/drug effects ; *Small Molecule Libraries ; Sulfonamides/chemistry/isolation & purification/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-03-25
    Description: B cells are selected for an intermediate level of B-cell antigen receptor (BCR) signalling strength: attenuation below minimum (for example, non-functional BCR) or hyperactivation above maximum (for example, self-reactive BCR) thresholds of signalling strength causes negative selection. In approximately 25% of cases, acute lymphoblastic leukaemia (ALL) cells carry the oncogenic BCR-ABL1 tyrosine kinase (Philadelphia chromosome positive), which mimics constitutively active pre-BCR signalling. Current therapeutic approaches are largely focused on the development of more potent tyrosine kinase inhibitors to suppress oncogenic signalling below a minimum threshold for survival. We tested the hypothesis that targeted hyperactivation--above a maximum threshold--will engage a deletional checkpoint for removal of self-reactive B cells and selectively kill ALL cells. Here we find, by testing various components of proximal pre-BCR signalling in mouse BCR-ABL1 cells, that an incremental increase of Syk tyrosine kinase activity was required and sufficient to induce cell death. Hyperactive Syk was functionally equivalent to acute activation of a self-reactive BCR on ALL cells. Despite oncogenic transformation, this basic mechanism of negative selection was still functional in ALL cells. Unlike normal pre-B cells, patient-derived ALL cells express the inhibitory receptors PECAM1, CD300A and LAIR1 at high levels. Genetic studies revealed that Pecam1, Cd300a and Lair1 are critical to calibrate oncogenic signalling strength through recruitment of the inhibitory phosphatases Ptpn6 (ref. 7) and Inpp5d (ref. 8). Using a novel small-molecule inhibitor of INPP5D (also known as SHIP1), we demonstrated that pharmacological hyperactivation of SYK and engagement of negative B-cell selection represents a promising new strategy to overcome drug resistance in human ALL.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441554/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441554/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Zhengshan -- Shojaee, Seyedmehdi -- Buchner, Maike -- Geng, Huimin -- Lee, Jae Woong -- Klemm, Lars -- Titz, Bjorn -- Graeber, Thomas G -- Park, Eugene -- Tan, Ying Xim -- Satterthwaite, Anne -- Paietta, Elisabeth -- Hunger, Stephen P -- Willman, Cheryl L -- Melnick, Ari -- Loh, Mignon L -- Jung, Jae U -- Coligan, John E -- Bolland, Silvia -- Mak, Tak W -- Limnander, Andre -- Jumaa, Hassan -- Reth, Michael -- Weiss, Arthur -- Lowell, Clifford A -- Muschen, Markus -- 101880/Wellcome Trust/United Kingdom -- CA180794/CA/NCI NIH HHS/ -- CA180820/CA/NCI NIH HHS/ -- R01 AI068150/AI/NIAID NIH HHS/ -- R01 AI113272/AI/NIAID NIH HHS/ -- R01 CA137060/CA/NCI NIH HHS/ -- R01 CA139032/CA/NCI NIH HHS/ -- R01 CA157644/CA/NCI NIH HHS/ -- R01 CA169458/CA/NCI NIH HHS/ -- R01 CA172558/CA/NCI NIH HHS/ -- R01CA137060/CA/NCI NIH HHS/ -- R01CA139032/CA/NCI NIH HHS/ -- R01CA157644/CA/NCI NIH HHS/ -- R01CA169458/CA/NCI NIH HHS/ -- R01CA172558/CA/NCI NIH HHS/ -- U01 CA157937/CA/NCI NIH HHS/ -- U10 CA180794/CA/NCI NIH HHS/ -- U10 CA180820/CA/NCI NIH HHS/ -- U10 CA180827/CA/NCI NIH HHS/ -- U10 CA180886/CA/NCI NIH HHS/ -- U24 CA114737/CA/NCI NIH HHS/ -- U24 CA196172/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 May 21;521(7552):357-61. doi: 10.1038/nature14231. Epub 2015 Mar 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Laboratory Medicine, University of California, San Francisco, California 94143, USA. ; Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095, USA. ; Rosalind Russell-Ephraim P. Engleman Medical Research Center for Arthritis, Division of Rheumatology, Department of Medicine, Howard Hughes Medical Institute, University of California, San Francisco, California 94143, USA. ; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10466, USA. ; Division of Pediatric Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Philadelphia 19104, USA. ; University of New Mexico Cancer Center, Albuquerque, New Mexico 87102, USA. ; Departments of Medicine and Pharmacology, Weill Cornell Medical College, New York, New York 10065, USA. ; Pediatric Hematology-Oncology, University of California, San Francisco, California 94143, USA. ; Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California 90033, USA. ; Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA. ; Autoimmunity and Functional Genomics Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA. ; The Campbell Family Institute for Breast Cancer Research, University Health Network, 620 University Avenue, Toronto, Ontario M5G 2M9, Canada. ; Department of Anatomy, University of California, San Francisco, California 94143, USA. ; Institute of Immunology, University Clinics Ulm, 89081 Ulm, Germany. ; BIOSS Centre for Biological Signalling Studies and Faculty of Biology, Albert-Ludwigs-Universitat Freiburg, and MPI of Immunbiologie and Epigenetics, 79104 Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25799995" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs/genetics ; Animals ; Antigens, CD/metabolism ; Antigens, CD31/metabolism ; B-Lymphocytes/drug effects/*metabolism/*pathology ; Cell Death/drug effects ; Cell Line, Tumor ; Cell Transformation, Neoplastic ; Disease Models, Animal ; Drug Resistance, Neoplasm/drug effects ; Enzyme Activation/drug effects ; Female ; Fusion Proteins, bcr-abl/genetics ; Gene Deletion ; Humans ; Intracellular Signaling Peptides and Proteins/agonists/metabolism ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Phosphoric Monoester Hydrolases/antagonists & inhibitors/metabolism ; Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug ; therapy/genetics/*metabolism/*pathology ; Precursor Cells, B-Lymphoid/drug effects/metabolism/pathology ; Protein Tyrosine Phosphatase, Non-Receptor Type 6/deficiency/genetics/metabolism ; Protein-Tyrosine Kinases/metabolism ; Receptors, Antigen, B-Cell/deficiency/genetics/metabolism ; Receptors, Immunologic/genetics/metabolism ; *Signal Transduction/drug effects ; Tyrosine/metabolism ; Xenograft Model Antitumor Assays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...