ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2000-06-10
    Description: Targeted deletion of metabotropic glutamate receptor-subtype 1 (mGluR1) gene can cause defects in development and function in the cerebellum. We introduced the mGluR1alpha transgene into mGluR1-null mutant [mGluR1 (-/-)] mice with a Purkinje cell (PC)-specific promoter. mGluR1-rescue mice showed normal cerebellar long-term depression and regression of multiple climbing fiber innervation, events significantly impaired in mGluR1 (-/-) mice. The impaired motor coordination was rescued by this transgene, in a dose-dependent manner. We propose that mGluR1 in PCs is a key molecule for normal synapse formation, synaptic plasticity, and motor control in the cerebellum.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ichise, T -- Kano, M -- Hashimoto, K -- Yanagihara, D -- Nakao, K -- Shigemoto, R -- Katsuki, M -- Aiba, A -- New York, N.Y. -- Science. 2000 Jun 9;288(5472):1832-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of DNA Biology and Embryo Engineering, Center for Experimental Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10846166" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Excitatory Postsynaptic Potentials ; Gene Targeting ; Locomotion ; Mice ; Mice, Transgenic ; Motor Activity/*physiology ; Nerve Fibers/physiology ; Neuronal Plasticity/*physiology ; Psychomotor Performance/*physiology ; Purkinje Cells/*physiology ; Receptors, Metabotropic Glutamate/genetics/*physiology ; Synapses/*physiology ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-01-24
    Description: Synaptic inputs on dendrites are nonlinearly converted to action potential outputs, yet the spatiotemporal patterns of dendritic activation remain to be elucidated at single-synapse resolution. In rodents, we optically imaged synaptic activities from hundreds of dendritic spines in hippocampal and neocortical pyramidal neurons ex vivo and in vivo. Adjacent spines were frequently synchronized in spontaneously active networks, thereby forming dendritic foci that received locally convergent inputs from presynaptic cell assemblies. This precise subcellular geometry manifested itself during N-methyl-D-aspartate receptor-dependent circuit remodeling. Thus, clustered synaptic plasticity is innately programmed to compartmentalize correlated inputs along dendrites and may reify nonlinear synaptic integration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takahashi, Naoya -- Kitamura, Kazuo -- Matsuo, Naoki -- Mayford, Mark -- Kano, Masanobu -- Matsuki, Norio -- Ikegaya, Yuji -- New York, N.Y. -- Science. 2012 Jan 20;335(6066):353-6. doi: 10.1126/science.1210362.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22267814" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; CA3 Region, Hippocampal/cytology/physiology ; Calcium/metabolism ; Dendritic Spines/*physiology/ultrastructure ; Excitatory Postsynaptic Potentials ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Nerve Net/*physiology ; Neuronal Plasticity ; Organ Culture Techniques ; Patch-Clamp Techniques ; Pyramidal Cells/*physiology ; Rats ; Rats, Wistar ; Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors/metabolism ; Somatosensory Cortex/cytology/physiology ; Synapses/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-01-19
    Description: Environmental stressors during childhood and adolescence influence postnatal brain maturation and human behavioral patterns in adulthood. Accordingly, excess stressors result in adult-onset neuropsychiatric disorders. We describe an underlying mechanism in which glucocorticoids link adolescent stressors to epigenetic controls in neurons. In a mouse model of this phenomenon, a mild isolation stress affects the mesocortical projection of dopaminergic neurons in which DNA hypermethylation of the tyrosine hydroxylase gene is elicited, but only when combined with a relevant genetic risk for neuropsychiatric disorders. These molecular changes are associated with several neurochemical and behavioral deficits that occur in this mouse model, all of which are blocked by a glucocorticoid receptor antagonist. The biology and phenotypes of the mouse models resemble those of psychotic depression, a common and debilitating psychiatric disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617477/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617477/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Niwa, Minae -- Jaaro-Peled, Hanna -- Tankou, Stephanie -- Seshadri, Saurav -- Hikida, Takatoshi -- Matsumoto, Yurie -- Cascella, Nicola G -- Kano, Shin-ichi -- Ozaki, Norio -- Nabeshima, Toshitaka -- Sawa, Akira -- K99 MH094408/MH/NIMH NIH HHS/ -- K99MH-094408/MH/NIMH NIH HHS/ -- MH-069853/MH/NIMH NIH HHS/ -- MH-084018/MH/NIMH NIH HHS/ -- MH-085226/MH/NIMH NIH HHS/ -- MH-088753/MH/NIMH NIH HHS/ -- MH-092443/MH/NIMH NIH HHS/ -- MH-094268/MH/NIMH NIH HHS/ -- R01 MH092443/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2013 Jan 18;339(6117):335-9. doi: 10.1126/science.1226931.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Pharmacology, Meijo University Graduate School of Pharmaceutical Sciences, Nagoya, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23329051" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; *Adolescent Behavior ; *Adolescent Development ; Affective Disorders, Psychotic/genetics/*metabolism ; Animals ; Disease Models, Animal ; Dopaminergic Neurons/*metabolism ; *Epigenesis, Genetic ; Glucocorticoids/*metabolism ; Humans ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Nerve Tissue Proteins/genetics/metabolism ; Stress, Psychological/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...