ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-11-13
    Description: Active dendrites provide neurons with powerful processing capabilities. However, little is known about the role of neuronal dendrites in behaviourally related circuit computations. Here we report that a novel global dendritic nonlinearity is involved in the integration of sensory and motor information within layer 5 pyramidal neurons during an active sensing behaviour. Layer 5 pyramidal neurons possess elaborate dendritic arborizations that receive functionally distinct inputs, each targeted to spatially separate regions. At the cellular level, coincident input from these segregated pathways initiates regenerative dendritic electrical events that produce bursts of action potential output and circuits featuring this powerful dendritic nonlinearity can implement computations based on input correlation. To examine this in vivo we recorded dendritic activity in layer 5 pyramidal neurons in the barrel cortex using two-photon calcium imaging in mice performing an object-localization task. Large-amplitude, global calcium signals were observed throughout the apical tuft dendrites when active touch occurred at particular object locations or whisker angles. Such global calcium signals are produced by dendritic plateau potentials that require both vibrissal sensory input and primary motor cortex activity. These data provide direct evidence of nonlinear dendritic processing of correlated sensory and motor information in the mammalian neocortex during active sensation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Ning-long -- Harnett, Mark T -- Williams, Stephen R -- Huber, Daniel -- O'Connor, Daniel H -- Svoboda, Karel -- Magee, Jeffrey C -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Dec 13;492(7428):247-51. doi: 10.1038/nature11601. Epub 2012 Nov 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23143335" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Animal/*physiology ; Calcium/metabolism ; Dendrites/*physiology ; Male ; Mice ; Mice, Inbred C57BL ; Motor Activity/*physiology ; Patch-Clamp Techniques ; Pyramidal Cells/physiology ; Sensation/*physiology ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-08-28
    Description: Cortical-feedback projections to primary sensory areas terminate most heavily in layer 1 (L1) of the neocortex, where they make synapses with tuft dendrites of pyramidal neurons. L1 input is thought to provide 'contextual' information, but the signals transmitted by L1 feedback remain uncharacterized. In the rodent somatosensory system, the spatially diffuse feedback projection from vibrissal motor cortex (vM1) to vibrissal somatosensory cortex (vS1, also known as the barrel cortex) may allow whisker touch to be interpreted in the context of whisker position to compute object location. When mice palpate objects with their whiskers to localize object features, whisker touch excites vS1 and later vM1 in a somatotopic manner. Here we use axonal calcium imaging to track activity in vM1--〉vS1 afferents in L1 of the barrel cortex while mice performed whisker-dependent object localization. Spatially intermingled individual axons represent whisker movements, touch and other behavioural features. In a subpopulation of axons, activity depends on object location and persists for seconds after touch. Neurons in the barrel cortex thus have information to integrate movements and touches of multiple whiskers over time, key components of object identification and navigation by active touch.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443316/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443316/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Petreanu, Leopoldo -- Gutnisky, Diego A -- Huber, Daniel -- Xu, Ning-long -- O'Connor, Dan H -- Tian, Lin -- Looger, Loren -- Svoboda, Karel -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Sep 13;489(7415):299-303. doi: 10.1038/nature11321.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22922646" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/metabolism ; Calcium Signaling ; Feedback, Physiological ; Male ; Mice ; Mice, Inbred C57BL ; Motor Cortex/cytology/*physiology ; Motor Neurons/metabolism ; Movement/physiology ; *Neural Pathways ; Physical Stimulation ; Somatosensory Cortex/cytology/*physiology ; Touch/*physiology ; Vibrissae/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-04-09
    Description: Cortical neurons form specific circuits, but the functional structure of this microarchitecture and its relation to behaviour are poorly understood. Two-photon calcium imaging can monitor activity of spatially defined neuronal ensembles in the mammalian cortex. Here we applied this technique to the motor cortex of mice performing a choice behaviour. Head-fixed mice were trained to lick in response to one of two odours, and to withhold licking for the other odour. Mice routinely showed significant learning within the first behavioural session and across sessions. Microstimulation and trans-synaptic tracing identified two non-overlapping candidate tongue motor cortical areas. Inactivating either area impaired voluntary licking. Imaging in layer 2/3 showed neurons with diverse response types in both areas. Activity in approximately half of the imaged neurons distinguished trial types associated with different actions. Many neurons showed modulation coinciding with or preceding the action, consistent with their involvement in motor control. Neurons with different response types were spatially intermingled. Nearby neurons (within approximately 150 mum) showed pronounced coincident activity. These temporal correlations increased with learning within and across behavioural sessions, specifically for neuron pairs with similar response types. We propose that correlated activity in specific ensembles of functionally related neurons is a signature of learning-related circuit plasticity. Our findings reveal a fine-scale and dynamic organization of the frontal cortex that probably underlies flexible behaviour.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Komiyama, Takaki -- Sato, Takashi R -- O'Connor, Daniel H -- Zhang, Ying-Xin -- Huber, Daniel -- Hooks, Bryan M -- Gabitto, Mariano -- Svoboda, Karel -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Apr 22;464(7292):1182-6. doi: 10.1038/nature08897. Epub 2010 Apr 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Janelia Farm Research Campus, HHMI, Ashburn, Virginia 20147, USA. komiyamat@janelia.hhmi.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20376005" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axonal Transport ; Behavior, Animal/*physiology ; Choice Behavior/physiology ; Learning/*physiology ; Male ; Mice ; Mice, Inbred C57BL ; Motor Cortex/*cytology/*physiology ; Motor Neurons/physiology ; Neural Pathways/*physiology ; Odors/analysis ; Pyramidal Cells/physiology ; Reward ; Stimulation, Chemical ; Time Factors ; Tongue/cytology/innervation/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...