ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-07-22
    Description: The rapid dissemination of the 2009 pandemic influenza virus underscores the need for universal influenza vaccines that elicit protective immunity to diverse viral strains. Here, we show that vaccination with plasmid DNA encoding H1N1 influenza hemagglutinin (HA) and boosting with seasonal vaccine or replication-defective adenovirus 5 vector encoding HA stimulated the production of broadly neutralizing influenza antibodies. This prime/boost combination increased the neutralization of diverse H1N1 strains dating from 1934 to 2007 as compared to either component alone and conferred protection against divergent H1N1 viruses in mice and ferrets. These antibodies were directed to the conserved stem region of HA and were also elicited in nonhuman primates. Cross-neutralization of H1N1 subtypes elicited by this approach provides a basis for the development of a universal influenza vaccine for humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wei, Chih-Jen -- Boyington, Jeffrey C -- McTamney, Patrick M -- Kong, Wing-Pui -- Pearce, Melissa B -- Xu, Ling -- Andersen, Hanne -- Rao, Srinivas -- Tumpey, Terrence M -- Yang, Zhi-Yong -- Nabel, Gary J -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2010 Aug 27;329(5995):1060-4. doi: 10.1126/science.1192517. Epub 2010 Jul 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892-3005, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20647428" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Neutralizing/biosynthesis/*immunology ; Antibodies, Viral/biosynthesis/*immunology ; *Cross Protection ; Female ; Ferrets ; Genetic Vectors ; Hemagglutinin Glycoproteins, Influenza Virus/genetics/*immunology ; Humans ; Immunization, Secondary ; Influenza A Virus, H1N1 Subtype/*immunology ; Influenza A Virus, H2N2 Subtype/immunology ; Influenza A Virus, H3N2 Subtype/immunology ; Influenza A Virus, H5N1 Subtype/immunology ; Influenza Vaccines/*administration & dosage/*immunology ; Influenza, Human/immunology/prevention & control ; Macaca mulatta ; Male ; Mice ; Mice, Inbred BALB C ; Mutant Proteins/immunology ; Orthomyxoviridae Infections/immunology/prevention & control ; Plasmids ; Vaccination ; Vaccines, DNA/administration & dosage/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-12-06
    Description: Despite tremendous efforts, development of an effective vaccine against human immunodeficiency virus (HIV) has proved an elusive goal. Recently, however, numerous antibodies have been identified that are capable of neutralizing most circulating HIV strains. These antibodies all exhibit an unusually high level of somatic mutation, presumably owing to extensive affinity maturation over the course of continuous exposure to an evolving antigen. Although substantial effort has focused on the design of immunogens capable of eliciting antibodies de novo that would target similar epitopes, it remains uncertain whether a conventional vaccine will be able to elicit analogues of the existing broadly neutralizing antibodies. As an alternative to immunization, vector-mediated gene transfer could be used to engineer secretion of the existing broadly neutralizing antibodies into the circulation. Here we describe a practical implementation of this approach, which we call vectored immunoprophylaxis (VIP), which in mice induces lifelong expression of these monoclonal antibodies at high concentrations from a single intramuscular injection. This is achieved using a specialized adeno-associated virus vector optimized for the production of full-length antibody from muscle tissue. We show that humanized mice receiving VIP appear to be fully protected from HIV infection, even when challenged intravenously with very high doses of replication-competent virus. Our results suggest that successful translation of this approach to humans may produce effective prophylaxis against HIV.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3253190/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3253190/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Balazs, Alejandro B -- Chen, Joyce -- Hong, Christin M -- Rao, Dinesh S -- Yang, Lili -- Baltimore, David -- 1K08CA133521/CA/NCI NIH HHS/ -- HHSN266200500035C/PHS HHS/ -- K08 CA133521/CA/NCI NIH HHS/ -- N01AI50035/AI/NIAID NIH HHS/ -- England -- Nature. 2011 Nov 30;481(7379):81-4. doi: 10.1038/nature10660.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22139420" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/administration & dosage/genetics/*immunology ; Animals ; Antibodies, Monoclonal/genetics/immunology ; Antibodies, Neutralizing/genetics/*immunology ; CD4 Lymphocyte Count ; CD4-Positive T-Lymphocytes/cytology/immunology ; Dependovirus/genetics/immunology ; Genetic Vectors/administration & dosage/*genetics ; HIV Antibodies/genetics/*immunology ; HIV Infections/*immunology/*prevention & control ; Humans ; Immunization, Passive/*methods ; Immunoglobulin G/genetics/immunology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mice, Inbred NOD ; Mice, SCID
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-05-24
    Description: Influenza viruses pose a significant threat to the public and are a burden on global health systems. Each year, influenza vaccines must be rapidly produced to match circulating viruses, a process constrained by dated technology and vulnerable to unexpected strains emerging from humans and animal reservoirs. Here we use knowledge of protein structure to design self-assembling nanoparticles that elicit broader and more potent immunity than traditional influenza vaccines. The viral haemagglutinin was genetically fused to ferritin, a protein that naturally forms nanoparticles composed of 24 identical polypeptides. Haemagglutinin was inserted at the interface of adjacent subunits so that it spontaneously assembled and generated eight trimeric viral spikes on its surface. Immunization with this influenza nanoparticle vaccine elicited haemagglutination inhibition antibody titres more than tenfold higher than those from the licensed inactivated vaccine. Furthermore, it elicited neutralizing antibodies to two highly conserved vulnerable haemagglutinin structures that are targets of universal vaccines: the stem and the receptor binding site on the head. Antibodies elicited by a 1999 haemagglutinin-nanoparticle vaccine neutralized H1N1 viruses from 1934 to 2007 and protected ferrets from an unmatched 2007 H1N1 virus challenge. This structure-based, self-assembling synthetic nanoparticle vaccine improves the potency and breadth of influenza virus immunity, and it provides a foundation for building broader vaccine protection against emerging influenza viruses and other pathogens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kanekiyo, Masaru -- Wei, Chih-Jen -- Yassine, Hadi M -- McTamney, Patrick M -- Boyington, Jeffrey C -- Whittle, James R R -- Rao, Srinivas S -- Kong, Wing-Pui -- Wang, Lingshu -- Nabel, Gary J -- Intramural NIH HHS/ -- England -- Nature. 2013 Jul 4;499(7456):102-6. doi: 10.1038/nature12202. Epub 2013 May 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23698367" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Neutralizing/*immunology ; Antibodies, Viral/*immunology ; Binding Sites ; Cross Reactions/immunology ; Female ; Ferrets/immunology/virology ; Ferritins/chemistry ; Hemagglutination Inhibition Tests ; Hemagglutinin Glycoproteins, Influenza Virus/immunology ; Influenza A Virus, H1N1 Subtype/classification/*immunology ; Influenza Vaccines/*chemistry/*immunology ; Male ; Mice ; Mice, Inbred BALB C ; Nanoparticles/*chemistry ; Orthomyxoviridae Infections/immunology/prevention & control/virology ; Vaccines, Inactivated/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...