ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Meteorology and Climatology  (2)
Collection
Keywords
  • Meteorology and Climatology  (2)
Years
  • 1
    Publication Date: 2013-08-31
    Description: Utilizing multi-spectral, dual-polarization Special Sensor Microwave Imager (SSM/I) radiometer measurements, we have developed in this study a method to retrieve average rain rate, R(sub f(sub R)), in a mesoscale grid box of 2deg x 3deg over land. The key parameter of this method is the fractional rain area, f(sub R), in that grid box, which is determined with the help of a threshold on the 85 GHz scattering depression 0 deduced from the SSM/I data. In order to demonstrate the usefulness of this method, nine-months of R(sub f(sub R))are retrieved from SSM/I data over three grid boxes in the Northeastern United States. These retrievals are then compared with the corresponding ground-truth-average rain rate, R(sub g), deduced from 15-minute rain gauges. Based on nine months of rain rate retrievals over three grid boxes, we find that R(sub f(sub R)can explain about 64 % of the variance contained in R(sub g). A similar evaluation of the grid-box-average rain rates R(sub GSCAT) and R(sub SRL), given by the NASA/GSCAT and NOAA/SRL rain retrieval algorithms, is performed. This evaluation reveals that R(sub GSCAT) and R(sub SRL) can explain only about 42 % of the variance contained in R(sub g). In our method, a threshold on the 85 GHz scattering depression is used primarily to determine the fractional rain area in a mesoscale grid box. Quantitative information pertaining to the 85 GHz scattering depression in the grid box is disregarded. In the NASA/GSCAT and NOAA/SRL methods on the other hand, this quantitative information is included. Based on the performance of all three methods, we infer that the magnitude of the scattering depression is a poor indicator of rain rate. Furthermore, from maps based on the observations made by SSM/I on land and ocean we find that there is a significant redundancy in the information content of the SSM/I multi-spectral observations. This leads us to infer that observations of SSM/I at 19 and 37 GHz add only marginal information to that given by 85 GHz scattering depression. As with other methods, the area-average rain retrieval method developed in this study needs tuning with radar and/or rain gauge observations. In the TRMM mission, the microwave radiometer rain retrieval algorithm can be tuned with TRMM radar observations. Since the radiometer has about 3.5 times wider spatial coverage compared to the radar in the TRMM mission, such an algorithm can be useful to extend geographically the rain information provided by the TRMM Precipitation Radar.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-14
    Description: Rainfall production is a fundamental process within the Earth's hydrological cycle because it represents both a principal forcing term in surface water budgets, and its energetics corollary, latent heating (LH), is one of the principal sources of atmospheric diabatic heating. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water. The vertical distribution of LH has a strong influence on the atmosphere, controlling large-scale tropical circulations, exciting and modulating tropical waves, maintaining the intensities of tropical cyclones, and even providing the energetics of midlatitude cyclones and other mobile midlatitude weather systems. Moreover, the processes associated with LH result in significant non-linear changes in atmospheric radiation through the creation, dissipation and modulation of clouds and precipitation. Yanai et al. (1973) utilized the meteorological data collected from a sounding network to present a pioneering work on thermodynamic budgets, which are referred to as the apparent heat source (Q1) and apparent moisture sink (Q2). Yanai's paper motivated the development of satellite-based LH algorithms and provided a theoretical background for imposing large-scale advective forcing into cloud-resolving models (CRMs). These CRM-simulated LH and Q1 data have been used to generate the look-up tables used in LH algorithms. This paper examines the retrieval, validation, and application of LH estimates based on rain rate quantities acquired from the Tropical Rainfall Measuring Mission satellite (TRMM). TRMM was launched in November 1997 as a joint enterprise between the American and Japanese space agencies -- with overriding goals of providing accurate four-dimensional estimates of rainfall and LH over the global Tropics and subtropics equatorward of 35o. Other literature has acknowledged the achievement of the first goal of obtaining an accurate rainfall climatology. This paper describes the second major goal of obtaining credible LH estimates as well as their applications within TRMM's zone of coverage, the standard TRMM LH products, and areas for further improvement.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN10034
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...