ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: Determining moisture variability for all weather scenes is critical to understanding the earth's hydrologic cycle and global climate changes. Remote sensing from geostationary satellites provides the necessary temporal and spatial resolutions necessary for global change studies. Due to antenna size constraints imposed with the use of microwave radiometers, geostationary satellites have carried instruments passively measuring radiation at infrared wavelengths or shorter. The shortfall of using infrared instruments in moisture studies lies in its inability to sense terrestrial radiation through clouds. Microwave emissions, on the other hand, are mostly unaffected by cloudy atmospheres. Land surface emissivity at microwave frequencies exhibit both high temporal and spatial variability thus confining moisture retrievals at microwave frequencies to over marine atmospheres (a near uniform cold background). This study intercompares the total column integrated water content Precipitable Water, (PW) as derived from both the Special Sensor Microwave Imager (SSM/I) and the Geostationary Operational Environmental Satellite (GOES) VISSR Atmospheric Sounder (VAS) pathfinder data sets. PW is a bulk parameter often used to quantify moisture variability and is important to understanding the earth's hydrologic cycle and climate system. This research has been spawned in an effort to combine two different algorithms which together can lead to a more comprehensive quantification of global water vapor. The approach taken here is to intercompare two independent PW retrieval algorithms and to validate the resultant retrievals against an existing data set, namely the European Center for Medium range Weather Forecasts (ECMWF) model analysis data.
    Keywords: Meteorology and Climatology
    Type: NASA-TM-112508 , NAS 1.15:112508 , Eighth Conference on Satellite Meteorology and Oceanography; 68-71
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: We investigate the spatial variability of the normalized radar cross section of the surface (NRCS or Sigma(sup 0)) derived from measurements of the TRMM Precipitation Radar (PR) for the period from 1998 to 2009. The purpose of the study is to understand the way in which the sample standard deviation of the Sigma(sup 0) data changes as a function of spatial resolution, incidence angle, and surface type (land/ocean). The results have implications regarding the accuracy by which the path integrated attenuation from precipitation can be inferred by the use of surface scattering properties.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The adjustment of parameterized gravity waves associated with model convection and finer vertical resolution has made possible the generation of the quasi-biennial oscillation (QBO) in two Goddard Institute for Space Studies (GISS) models, GISS Middle Atmosphere Global Climate Model III and a climate/middle atmosphere version of Model E2. Both extend from the surface to 0.002 hPa, with 2deg 2.5deg resolution and 102 layers. Many realistic features of the QBO are simulated, including magnitude and variability of its period and amplitude. The period itself is affected by the magnitude of parameterized convective gravity wave momentum fluxes and interactive ozone (which also affects the QBO amplitude and variability), among other forcings. Although varying sea surface temperatures affect the parameterized momentum fluxes, neither aspect is responsible for the modeled variation in QBO period. Both the parameterized and resolved waves act to produce the respective easterly and westerly wind descent, although their effect is offset in altitude at each level. The modeled and observed QBO influences on tracers in the stratosphere, such as ozone, methane, and water vapor are also discussed. Due to the link between the gravity wave parameterization and the models' convection, and the dependence on the ozone field, the models may also be used to investigate how the QBO may vary with climate change.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN13524 , Journal of Geophysical Research: Atmospheres; 119; 14; 8798-8824
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The authors describe the characteristics of tropical cyclone (TC) activity in the GISS general circulation ModelE2 with a horizontal resolution 1deg x 1deg. Four model simulations are analyzed. In the first, the model is forced with sea surface temperature (SST) from the recent historical climatology. The other three have different idealized climate change simulations, namely (1) a uniform increase of SST by 2 deg., (2) doubling of the CO2 concentration and (3) a combination of the two. These simulations were performed as part of the US Climate Variability and Predictability Program Hurricane Working Group. Diagnostics of standard measures of TC activity are computed from the recent historical climatological SST simulation and compared with the same measures computed from observations. The changes in TC activity in the three idealized climate change simulations, by comparison with that in the historical climatological SST simulation, are also described. Similar to previous results in the literature, the changes in TC frequency in the simulation with a doubling CO2 and an increase in SST are approximately the linear sum of the TC frequency in the other two simulations. However, in contrast with previous results, in these simulations the effects of CO2 and SST on TC frequency oppose each other. Large-scale environmental variables associated with TC activity are then analyzed for the present and future simulations. Model biases in the large-scale fields are identified through a comparison with ERA-Interim reanalysis. Changes in the environmental fields in the future climate simulations are shown and their association with changes in TC activity discussed.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN34579 , Tellus A: Dynamic Meteorology and Oceanography; 68; 31494
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-17
    Description: GOES-7 VAS measurements during the Pathfinder period (1987-88) have been analysed to reveal seasonal and interannual variations in moisture transport. Long term measurements of quality winds and humidity from satellite estimates show superior benefit in diagnosing middle and upper tropospheric large scale climate variations such as ENSO events and direct circulation systems such as the Hadley Cell. A water Vapor Transport Index (WVTI) has been developed to diagnose preferred regions of strong moisture transport and to gauge the seasonal and interannual intensities detected in the GOES viewing area. Second-order variables that may be derived from GOES winds will be also discussed on the poster.
    Keywords: Meteorology and Climatology
    Type: Satellite Meteorology and Oceanography; May 25, 1998 - May 29, 1998; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: The global characteristics of tropical cyclones (TCs) simulated by several climate models are analyzed and compared with observations. The global climate models were forced by the same sea surface temperature (SST) fields in two types of experiments, using climatological SST and interannually varying SST. TC tracks and intensities are derived from each model's output fields by the group who ran that model, using their own preferred tracking scheme; the study considers the combination of model and tracking scheme as a single modeling system, and compares the properties derived from the different systems. Overall, the observed geographic distribution of global TC frequency was reasonably well reproduced. As expected, with the exception of one model, intensities of the simulated TC were lower than in observations, to a degree that varies considerably across models.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN17551
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: One of the TRMM radar products of interest is the monthly-averaged rain rates over 5 x 5 degree cells. Clearly, the most directly way of calculating these and similar statistics is to compute them from the individual estimates made over the instantaneous field of view of the Instrument (4.3 km horizontal resolution). An alternative approach is the use of a threshold method. It has been established that over sufficiently large regions the fractional area above a rain rate threshold and the area-average rain rate are well correlated for particular choices of the threshold [e.g., Kedem et al., 19901]. A straightforward application of this method to the TRMM data would consist of the conversion of the individual reflectivity factors to rain rates followed by a calculation of the fraction of these that exceed a particular threshold. Previous results indicate that for thresholds near or at 5 mm/h, the correlation between this fractional area and the area-average rain rate is high. There are several drawbacks to this approach, however. At the TRMM radar frequency of 13.8 GHz the signal suffers attenuation so that the negative bias of the high resolution rain rate estimates will increase as the path attenuation increases. To establish a quantitative relationship between fractional area and area-average rain rate, an independent means of calculating the area-average rain rate is needed such as an array of rain gauges. This type of calibration procedure, however, is difficult for a spaceborne radar such as TRMM. To estimate a statistic other than the mean of the distribution requires, in general, a different choice of threshold and a different set of tuning parameters.
    Keywords: Meteorology and Climatology
    Type: Paper 7A.7 , Laboratory for Hydrospheric Processes Research Publications; 241-242|Radar Meteorology; Sep 07, 1997 - Sep 12, 1997; Austin, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Ever since the first satellite image loops from the 6.3 micron water vapor channel on the METEOSAT-1 in 1978, there have been numerous efforts (many to a great degree of success) to relate the water vapor radiance patterns to familiar atmospheric dynamic quantities. The realization of these efforts is becoming evident with the merging of satellite derived winds into predictive models (Velden et al., 1997; Swadley and Goerss, 1989). Another parameter that has been quantified from satellite water vapor channel measurements is upper tropospheric relative humidity (UTH) (e.g., Soden and Bretherton, 1996; Schmetz and Turpeinen, 1988). These humidity measurements, in turn, can be used to quantify upper tropospheric water vapor and its transport to more accurately diagnose climate changes (Lerner et al., 1998; Schmetz et al. 1995a) and quantify radiative processes in the upper troposphere. Also apparent in water vapor imagery animations are regions of subsiding and ascending air flow. Indeed, a component of the translated motions we observe are due to vertical velocities. The few attempts at exploiting this information have been met with a fair degree of success. Picon and Desbois (1990) statistically related Meteosat monthly mean water vapor radiances to six standard pressure levels of the European Centre for Medium Range Weather Forecast (ECMWF) model vertical velocities and found correlation coefficients of about 0.50 or less. This paper presents some preliminary results of viewing climatological satellite water vapor data in a different fashion. Specifically, we attempt to infer the three dimensional flow characteristics of the mid- to upper troposphere as portrayed by GOES VAS during the warm ENSO event (1987) and a subsequent cold period in 1998.
    Keywords: Meteorology and Climatology
    Type: NASA/TM-1998-208131 , NAS 1.15:208131 , Conference on Satellite Meteorology and Oceanography; May 25, 1998 - May 29, 1998; Paris; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: MODIS 4 NACP is a NASA-funded project supporting the North American Carbon Program (NACP). The purpose of this Advancing Collaborative Connections for Earth-Sun System Science (ACCESS) project is to provide researchers with Moderate Resolution Imaging Spectroradiometer (MODIS) biophysical data products that are custom tailored for use in NACP model studies. Standard MODIS biophysical products provide used to improve our understanding on the climate and ecosystem changes. However, direct uses of the MODIS biophysical parameters are constrained by retrieval quality and cloud contamination. Another challenge that NACP users face is acquiring MODIS data in formats and at spatial-temporal resolutions consistent with other data sets they use. We have been working closely with key NACP users to tailor the MODIS products to fit their needs. First, we provide new temporally smoothed and spatially continuous MODIS biophysical data sets. Second, we are distributing MODIS data at suitable spatial-temporal resolutions and in formats consistent with other data integration into model studies.
    Keywords: Meteorology and Climatology
    Type: International Geoscience and Remote Sensing Symposium (IGARSS) ''07; Jul 23, 2007 - Jul 27, 2007; Barcelona; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: The variability of Atlantic tropical cyclones (TCs) associated with El Nino-Southern Oscillation (ENSO) in model simulations is assessed and compared with observations. The model experiments are 28-yr simulations forced with the observed sea surface temperature from 1982 to 2009. The simulations were coordinated by the U.S. CLIVAR Hurricane Working Group and conducted with five global climate models (GCMs) with a total of 16 ensemble members. The model performance is evaluated based on both individual model ensemble means and multi-model ensemble mean. The latter has the highest anomaly correlation (0.86) for the interannual variability of TCs. Previous observational studies show a strong association between ENSO and Atlantic TC activity, as well as distinctions in the TC activities during eastern Pacific (EP) and central Pacific (CP) El Nino events. The analysis of track density and TC origin indicates that each model has different mean biases. Overall, the GCMs simulate the variability of Atlantic TCs well with weaker activity during EP El Nino and stronger activity during La Nina. For CP El Nino, there is a slight increase in the number of TCs as compared with EP El Nino. However, the spatial distribution of track density and TC origin is less consistent among the models. Particularly, there is no indication of increasing TC activity over the U.S. southeast coastal region as in observations. The difference between the models and observations is likely due to the bias of vertical wind shear in response to the shift of tropical heating associated with CP El Nino, as well as the model bias in the mean circulation.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN12678
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...