ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multi-method analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN46213 , Proceedings of the National Academy of Sciences of the United States of America (ISSN 1091-6490); 114; 35; 9326–9331
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere the global carbon budget is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates and consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models. We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as +/- 1(sigma), reflecting the current capacity to characterize the annual estimates of each component of the global carbon budget. For the last decade available (2006-2015), EFF was 9.3+/-0.5 GtC/yr, ELUC 1.0+/-0.5 GtC/yr,GATM 4.5+/-0.1 GtC/yr, SOCEAN 2.6+/-0.5 GtC/yr, and SLAND 3.1+/-0.9 GtC/yr. For year 2015 alone, the growth in EFF was approximately zero and emissions remained at 9.9+/-0.5 GtC/yr, showing a slowdown in growth of these emissions compared to the average growth of 1.8/yr that took place during 2006-2015.Also, for 2015, ELUC was 1.3+/-0.5 GtC/yr, GATM was 6.3+/-0.2 GtC/yr, SOCEAN was 3.0+/-0.5 GtC/yr, and SLAND was 1.9+/-0.9 GtC/yr. GATM was higher in 2015 compared to the past decade (2006-2015), reflecting a smaller SLAND for that year. The global atmospheric CO2 concentration reached 399.4+/-0.1 ppm averaged over 2015. For 2016, preliminary data indicate the continuation of low growth in EFF with +0.2% (range of -1.0 to +1.8% ) based on national emissions projections for China and USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. In spite of the low growth of EFF in 2016, the growth rate in atmospheric CO2 concentration is expected to be relatively high because of the persistence of the smaller residual terrestrial sink (SLAND) in response to El Nino conditions of 2015-2016. From this projection of EFF and assumed constant ELUC for 2016, cumulative emissions of CO2 will reach 565+/-55 GtC (2075+/-205 GtCO2) for 1870-2016, about 75% from EFF and 25% from ELUC. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN46180 , Earth System Science Data (e-ISSN 1866-3516); 8; 2; 605-649
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Agricultural production must increase to feed a growing and wealthier population, as well as to satisfy increasing demands for biomaterials and biomass-based energy. At the same time, deforestation and land-use change need to be minimized in order to preserve biodiversity and maintain carbon stores in vegetation and soils. Consequently, agricultural land use needs to be intensified in order to increase food production per unit area of land. Here we use simulations of AgMIP's Global Gridded Crop Model Intercomparison (GGCMI) phase 1 to assess implications of input-driven intensification (water, nutrients) on crop yield and yield stability, which is an important aspect in food security. We find region- and crop-specific responses for the simulated period 1980+/-2009 with broadly increasing yield variability under additional nitrogen inputs and stabilizing yields under additional water inputs (irrigation), reflecting current patterns of water and nutrient limitation. The different models of the GGCMI ensemble show similar response patterns, but model differences warrant further research on management assumptions, such as variety selection and soil management, and inputs as well as on model implementation of different soil and plant processes, such as on heat stress, and parameters. Higher variability in crop productivity under higher fertilizer input will require adequate buffer mechanisms in trade and distribution/storage networks to avoid food price volatility.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN58659 , PLOS ONE (e-ISSN 1932-6203); 13; 6; e0198748
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Global hydrological models (GHMs) have been applied to assess global flood hazards, but their capacity to capture the timing and amplitude of peak river discharge which is crucial in flood simulations has traditionally not been the focus of examination. Here we evaluate to what degree the choice of river routing scheme affects simulations of peak discharge and may help to provide better agreement with observations. To this end we use runoff and discharge simulations of nine GHMs forced by observational climate data (1971-2010) within the ISIMIP2a (Inter-Sectoral Impact Model Intercomparison Project phase 2a) project. The runoff simulations were used as input for the global river routing model CaMa-Flood (Catchment-based Macro-scale Floodplain). The simulated daily discharge was compared to the discharge generated by each GHM using its native river routing scheme. For each GHM both versions of simulated discharge were compared to monthly and daily discharge observations from 1701 GRDC (Global Runoff Data Centre) stations as a benchmark. CaMa-Flood routing shows a general reduction of peak river discharge and a delay of about two to three weeks in its occurrence, likely induced by the buffering capacity of floodplain reservoirs. For a majority of river basins, discharge produced by CaMa-Flood resulted in a better agreement with observations. In particular, maximum daily discharge was adjusted, with a multi-model averaged reduction in bias over about two-thirds of the analysed basin area. The increase in agreement was obtained in both managed and near-natural basins. Overall, this study demonstrates the importance of routing scheme choice in peak discharge simulation, where CaMa-Flood routing accounts for floodplain storage and backwater effects that are not represented in most GHMs. Our study provides important hints that an explicit parameterisation of these processes may be essential in future impact studies.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN44438 , Environmental Research Letters (e-ISSN 1748-9326); 12; 7; 075003
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...