ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2019-07-18
    Beschreibung: Some of the first evidence of a cloud absorption anomaly came from retrievals of cloud droplet size using measured multispectral cloud reflectance and in situ microphysical measurements. It was found that spectra computed from the measured droplet size or, equivalently, effective radius inverted from the reflectance measurements disagreed in such a way that suggested there was more absorption in cloud than predicted by theory. During the past decade new evidence of a cloud absorption anomaly has emerged from broadband solar flux measurements from above and below clouds. Based on these findings new field campaigns were devised to specifically address this problem. The most recent of these, the Atmospheric Radiation Measurement (ARM) Enhanced Shortwave Experiment II (ARESEII), included measurements of upwelling and downwelling moderate resolution (10 nm) solar irradiance spectra from above and below cloud. During this talk we will briefly summarize the advantages and limitations of these spectrally resolved measurements compared to the more standard broadband flux. We will focus on cloudy atmosphere results from the ARESEII field study and compare them to theoretical spectra from three independent models.
    Schlagwort(e): Meteorology and Climatology
    Materialart: Chapman Conference on Atmospheric Absorption of Solar Radiation; Aug 12, 2001 - Aug 16, 2001; Estes Park, CO; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-07-17
    Beschreibung: During the Puerto Rico Dust Experiment (PRIDE) upwelling and downwelling solar spectral irradiance was measured on board the SPAWAR Navajo and downwelling solar spectral flux was measured at a surface site using the NASA Ames Solar Spectral Flux Radiometer. These data will be used to determine the net solar radiative forcing of dust aerosol and to quantify the solar spectral radiative energy budget in the presence of elevated aerosol loading. We will assess the variability in spectral irradiance using formal principal component analysis procedures and relate the radiative variability to aerosol microphysical properties. Finally, we will characterize the sea surface reflectance to improve aerosol optical depth retrievals from the AVHRR satellite and to validate SeaWiFS ocean color products.
    Schlagwort(e): Meteorology and Climatology
    Materialart: American Geophysical Union 2000 Fall Meeting; Dec 15, 2000 - Dec 19, 2000; San Francisco, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-07-17
    Beschreibung: Airborne sunphotometry has been used to measure aerosols from North America, Europe, and Africa in coordination with satellite and in situ measurements in TARFOX (1996), ACE-2 (1997), PRIDE (2000), and SAFARI 2000. Similar coordinated measurements of Asian aerosols are being conducted this spring in ACE-Asia and are planned for North American aerosols this summer in CLAMS. This paper summarizes the approaches used, key results, and implications for aerosol properties and effects, such as single scattering albedo and regional radiative forcing. The approaches exploit the three-dimensional mobility of airborne sunphotometry to access satellite scenes over diverse surfaces (including open ocean with and without sunglint) and to match exactly the atmospheric layers sampled by airborne in situ measurements and other radiometers. These measurements permit tests of the consistency, or closure, among such diverse measurements as aerosol size-resolved chemical composition; number or mass concentration; light extinction, absorption, and scattering (total, hemispheric back and 180 deg.); and radiative fluxes. In this way the airborne sunphotometer measurements provide a key link between satellite and in situ measurements that helps to understand any discrepancies that are found. These comparisons have led to several characteristic results. Typically these include: (1) Better agreement among different types of remote measurements than between remote and in situ measurements. (2) More extinction derived from transmission measurements than from in situ measurements. (3) Larger aerosol absorption inferred from flux radiometry than from in situ measurements. Aerosol intensive properties derived from these closure studies have been combined with satellite-retrieved fields of optical depth to produce fields of regional radiative forcing. We show results for the North Atlantic derived from AVHRR optical depths and aerosol intensive properties from TARFOX and ACE-2. Companion papers show analogous, preliminary results for Asian-Pacific aerosols and results of SAFARI-2000 closure studies on African aerosols.
    Schlagwort(e): Meteorology and Climatology
    Materialart: 8th Scientific Assembly International Asssociation of Meteorology and Atmospheric Sciences; Jul 10, 2001 - Jul 18, 2001; Innsbruck; Austria
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-07-17
    Beschreibung: The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the Second Aerosol Characterization Experiment (ACE-2) made simultaneous measurements of shortwave radiative fluxes, solar-beam transmissions, and the aerosols affecting those fluxes and transmissions. Besides the measured fluxes and transmissions, other obtained properties include aerosol scattering and absorption measured in situ at the surface and aloft; aerosol single scattering albedo retrieved from skylight radiances; and aerosol complex refractive index derived by combining profiles of backscatter, extinction, and size distribution. These measurements of North Atlantic boundary layer aerosols impacted by anthropogenic pollution revealed the following characteristic results: (1) Better agreement among different types of remote measurements of aerosols (e.g., optical depth, extinction, and backscattering from sunphotometers, satellites, and lidars) than between remote and in situ measurements; 2) More extinction derived from transmission measurements than from in situ measurements; (3) Larger aerosol absorption inferred from flux radiometry than from other measurements. When the measured relationships between downwelling flux and optical depth (or beam transmission) are used to derive best-fit single scattering albedos for the polluted boundary layer aerosol, both TARFOX and ACE-2 yield midvisible values of 0.90 +/- 0.04. The other techniques give larger single scattering albedos (i.e. less absorption) for the polluted boundary layer, with a typical result of 0.95 +/- 0.04. Although the flux-based results have the virtue of describing the column aerosol unperturbed by sampling, they are subject to questions about representativeness and other uncertainties (e.g., unknown gas absorption). Current uncertainties in aerosol single scattering albedo are large in terms of climate effects. They also have an important influence on aerosol optical depths retrieved from satellite radiances. More tests are needed of the consistency among different methods and of the effects of changing humidity on aerosol.
    Schlagwort(e): Meteorology and Climatology
    Materialart: Chapman Conference on Atmospheric Absorption of Solar Radiation; Aug 13, 2001 - Aug 17, 2001; Estes Park, CO; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2019-07-13
    Beschreibung: Estimation of Direct Climate Forcing (DCF) due to aerosols in cloudy areas has historically been a difficult task, mainly because of a lack of appropriate measurements. Recently, passive remote sensing instruments have been developed that have the potential to retrieve both cloud and aerosol properties using polarimetric, multiple view angle, and multi spectral observations, and therefore determine DCF from aerosols above clouds. One such instrument is the Research Scanning Polarimeter (RSP), an airborne prototype of a sensor on the NASA Glory satellite, which unfortunately failed to reach orbit during its launch in March of 2011. In the spring of 2006, the RSP was deployed on an aircraft based in Veracruz, Mexico, as part of the Megacity Initiative: Local and Global Research Observations (MILAGRO) field campaign. On 13 March, the RSP over flew an aerosol layer lofted above a low altitude marine stratocumulus cloud close to shore in the Gulf of Mexico. We investigate the feasibility of retrieving aerosol properties over clouds using these data. Our approach is to first determine cloud droplet size distribution using the angular location of the cloud bow and other features in the polarized reflectance. The selected cloud was then used in a multiple scattering radiative transfer model optimization to determine the aerosol optical properties and fine tune the cloud size distribution. In this scene, we were able to retrieve aerosol optical depth, the fine mode aerosol size distribution parameters and the cloud droplet size distribution parameters to a degree of accuracy required for climate modeling. This required assumptions about the aerosol vertical distribution and the optical properties of the coarse aerosol size mode. A sensitivity study was also performed to place this study in the context of future systematic scanning polarimeter observations, which found that the aerosol complex refractive index can also be observed accurately if the aerosol optical depth is larger than roughly 0.8 at a wavelength of (0.555 m).
    Schlagwort(e): Meteorology and Climatology
    Materialart: GSFC.JA.00358.2012 , Atmospheric Chemistry and Physics; 11; 13; 6245-6263
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2019-07-18
    Beschreibung: Moderate resolution spectra of the downwelling solar irradiance at the ground in north central Oklahoma were measured during the Department of Energy Atmospheric Radiation Measurement Program Intensive Observation Period in the fall of 1997. Spectra obtained under cloud-free conditions were compared with calculations using a coarse resolution radiative transfer model to examine the dependency of model-measurement bias on water vapor. It was found that the bias was highly correlated with water vapor and increased at a rate of 9 Wm(exp -2) per cm of water. The source of the discrepancy remains undetermined because of the complex dependencies of other variables, most notably aerosol optical depth, on water vapor.
    Schlagwort(e): Meteorology and Climatology
    Materialart: Paper-1999GL011085 , Geophysical Research Letters (ISSN 0094-8276); 27; 1; 137-140
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2019-07-13
    Beschreibung: Measurements from the FIRE 1991 cirrus cloud field experiment in the central United States are presented and analyzed. The first part focuses on cirrus microphysical properties. Aircraft 2D-probe in situ data at different cloud altitudes were evaluated for cirrus cases on four different days. Also presented are simultaneous data samples from balloonborne videosondes. Only these balloonsondes could detect the smaller crystals. Their data suggest (at least for midlatitude altitudes below 10 km) that ice crystals smaller than 15 microns in size are rare and that small ice crystals not detected by 2D-probe measurements are radiatively of minor importance, as overlooked 2D-probe crystals account for about 10% of the total extinction. The second part focuses on the link between cirrus cloud properties and radiation. With cloud macrophysical properties from surface remote sensing added to the microphysical data and additional radiation measurements at the surface, testbeds for radiative transfer models were created. To focus on scattering processes, model evaluations were limited to the solar radiative transfer by comparing calculated and measured transmissions of sunlight at the surface. Comparisons under cloud-free conditions already reveal a model bias of about +45 W/sq m for the hemispheric solar downward broadband flux. This discrepancy, which is (at least in part) difficult to explain, has to be accounted for in comparisons involving clouds. Comparisons under cirrus cloud conditions identify as the major obstacle in cirrus solar radiative transfer modeling the inability of one-dimensional radiative transfer models to account for horizontal inhomogeneities. The successful incorporation of multidimensional radiative transfer effects will depend not only on better models but critically on the ability to measure and to define characteristic inhomogeneity scales of cloud fields. The relative minor error related to the microphysical treatment is in part a reflection of the improved understanding on solar scattering on ice crystals over the last decade and of the available wealth on ice-crystal size and shape data for this study. In absence of this information, uncertainties from microphysical cirrus model assumptions will remain high.
    Schlagwort(e): Meteorology and Climatology
    Materialart: Journal of the Atmospheric Sciences; 54; 2320-2344
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2019-07-13
    Beschreibung: A new radiative transfer model combining the efforts of three groups of researchers is discussed. The model accurately computes radiative transfer in a inhomogeneous absorbing, scattering and emitting atmospheres. As an illustration of the model, results are shown for the effects of dust on the thermal radiation.
    Schlagwort(e): Meteorology and Climatology
    Materialart: NASA-CR-203825 , NAS 1.26:203825 , 1996 International Radiation; Jan 01, 1996; Fairbanks, AL; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...