ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-02-20
    Description: Culture medium from an isolate of the fungus Aspergillus candidus was extracted, fractionated and examined to discover compounds antagonistic to plant-parasitic nematodes that are important pathogens of agricultural crops. Column, thin layer and preparative chromatographies and spectral and elemental analyses, were used to isolate and identify two major constituents of an active fraction (Fraction F) obtained from the medium. Compound 1 was identified as 2-hydroxypropane-1, 2, 3-tricarboxylic acid (citric acid). Compound 2 was identified as 3-hydroxy-5-methoxy-3-(methoxycarbonyl)-5-oxopentanoic acid, an isomer of 1, 2-dimethyl citrate. Compound 1 and a citric acid standard, each tested at 50 mg mL –1 in water, decreased hatch from eggs of the plant-parasitic nematode Meloidogyne incognita by more than 94%, and completely immobilized second-stage juveniles after 4–6 days exposure. Fraction F and Compounds 1 and 2 decreased the mobility of adults of the plant-parasitic nematode Ditylenchus destructor in vitro . Fraction F (25 mg mL –1 ) inhibited mobility 〉99% at 72 hrs. Compounds 1 and 2 (50 mg mL –1 ) each inhibited mobility more than 25% at 24 hr and more than 50% at 72 hr. This is the first assignment of nematode-antagonistic properties to specifically identified A. candidus metabolites.
    Keywords: Pathogens & Pathogenicity
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-20
    Description: The Atmospheric Infrared Sounder (AIRS) is the hyperspectral infrared sounder onboard NASA's Aqua satellite, launched in 2002. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), in collaboration with NASA Sounder Team at JPL, provides processing, archiving, and distribution services for NASA sounders: the Aqua AIRS mission and the subsequent Suomi-National Polar-orbiting Partnership Cross-track Infrared Sounder (CrIS) mission. The Planetary Boundary Layer (PBL) Height is a new variable added in the AIRS Version 6 support product. It is derived based on gradients of the retrieved atmospheric thermodynamic profile, and gives the pressure at the top of PBL over the ocean. The GES DISC also provides services for the second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) product generated by the Goddard Earth Observing System Model, Version 5 (GEOS-5) data assimilation system. The monthly PBL Height variable has been available in the Giovanni system, which is a Web-based application developed by the GES DISC providing a simple and intuitive way to visualize, analyze, and access vast amounts of Earth science remote sensing data. In this work, we will present the monthly PBL Height data from AIRS and MERRA-2 and the services to support data intercomparison, such as access, plotting, subsetting, re-gridding, and generation of a multi-year monthly mean. We will also show intercomparison results, and evaluate whether (over the ocean) AIRS can observe PBL features similar to the reanalysis product at monthly and longer-term scales.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN65014 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-20
    Description: At the NASA Goddard Earth Sciences (GES) Data and Information Service Center (DISC), we have archived and distributed more than 2,400 Earth science data products, from different missions or projects containing more than 100 M data files/granules with a total volume size nearly 2 PB that broadly serve user needs in science areas such as Atmospheric Composition, Water & Energy Cycles and Climate Variability. To date, GES DISC has developed many pertinent services to facilitate the usage of data products by our research communities, represented by approximately 24,000 registered users. We are facing the big data with increasingly archival volume and data types, moreover, we also encounter increasing users' demands and the demands are more diversified. It is still a challenge for us to better understand exactly what our users' needs are, even after developing more than 70 services, including well-known online tools such as Giovanni and MERRA subsetter. In this presentation, we will try to address how we can accommodate the users' needs from two applicational user communities, Air Quality and Wind Energy, from data or service discovery to guide them properly utilize the data and services to fit their needs.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN65771 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-20
    Description: Observational data are essential for Earth science research and applications. Traditional ground-based observations suffer from many limitations (e.g. costly deployment). As a result, data are often sparse and inconsistent, especially over vast oceans that cover nearly 71% of the Earth's surface, and for remote continents. Precipitation is one of the important physical parameters in the global hydrological cycle and other disciplines. Each year, severe floods and droughts happen in different parts of the world and cause significant damage to the economy, as well as human casualties (e.g. Hurricane Katrina, the Dust Bowl). Accurate and timely precipitation observations and predictions are important for research and applications. However, ground-based precipitation observations are quite limited, especially in remote and mountainous regions. Since the satellite era began, satellite-based precipitation products have gained popularity in Earth science research, applications, and education. Accessing satellite products can be a daunting task to many users, especially those who do not have prior experience or knowledge with satellite data. Recognizing this obstacle, the NASA Goddard Earth Sciences and Data and Information Services Center (GES DISC), home to data archives for the NASA-JAXA Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM), has developed data services including an online visualization and analysis tool, Giovanni (the Geospatial Interactive Online Visualization ANd aNalysis Infrastructure), enabling users at different levels to access, explore, and evaluate NASA satellite-based data products without downloading either data and software, or requiring coding. Currently, global and regional precipitation products from different satellite missions (TRMM, GPM) and projects (e.g. the Modern Era Retrospective-analysis for Research and Applications Version 2 (MERRA-2), and the North American Land Data Assimilation System (NLDAS)), ranging from half-hourly to monthly temporal resolution, are available in Giovanni. There are over 1900 variables in Giovanni, covering measurements in precipitation, hydrology, atmospheric dynamics, atmospheric chemistry, etc. In this poster presentation, we will provide a live demonstration of Giovanni and its latest development, including precipitation-related variables, and new basic features such as polar projections. The session will also provide a Q&A opportunity for attendees.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN64638 , American Meteorological Society Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-20
    Description: The Goddard Earth Sciences (GES) Data and Information Services Center (DISC) is home to data archives of the NASA-JAXA Global Precipitation Measurement (GPM), the Tropical Rainfall Measuring Mission (TRMM), and other NASA missions and projects. To maximize the use of NASA data products in scientific research and applications as well as for societal benefits, we provide data and information services that make datasets easy to find and use through simplification of data access for users at all levels around the world. Over the years, user-friendly data services have been developed at GES DISC, including data subsetting, format conversion, online visualization and analysis (i.e. Giovanni), user support system, etc. We routinely analyze questions, feedback, and use cases from users and algorithm developers around the world as well as best practices and new technology to improve existing services and formulate new data services. Interaction between users and algorithm developers is an important process for identifying issues in products, collecting user requirements, and improving product quality and usability. Staff members regularly communicate with algorithm developers with user questions and concerns through conferences and workshops. We publish peer-reviewed papers and articles in major Earth science journals and book chapters to describe NASA global and regional precipitation datasets and services with examples. News articles about GPM and TRMM datasets associated with significant events are regularly posted in the GES DISC Web portal and social media. We also actively participate in training activities. In this presentation, we present our latest activities about GPM and TRMM data services, data/service metrics, and future plans at GES DISC.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN64656 , American Meteorological Society Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-20
    Description: Global satellite-based precipitation products have been widely used in research and applications around the world. Compared to ground-based observations, satellite-based measurements provide data on a global scale, especially in remote continents and over oceans. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) is home to NASA global precipitation product archives including the Tropical Rainfall Measuring Mission (TRMM), the Global Precipitation Measurement (GPM), as well as other global and regional precipitation products. Precipitation is one of the top downloaded and accessed parameters in the GES DISC data archive. Meanwhile, users want to easily locate and obtain data quality information at regional and global scales to better understand how precipitation products perform and how reliable they are. As a data service provider, it is necessary to provide easy access to data quality information. However, such information normally is not available, and when it is available, it is not in one place and difficult to locate. In this presentation, we will present such challenges and activities at the GES DISC to address precipitation data (other datasets as well) quality issues.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN62899 , Workshop of the International Precipitation Working Group; Nov 05, 2018 - Nov 09, 2018; Seoul; Korea, Democratic People''s Republic of
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-20
    Description: Precipitation is a key environmental variable. For example, in agriculture, precipitation, temperature, water (soil moisture), solar radiation, NDVI, etc., are key variables.Rainfed agriculture major farming practices that rely on rainfall for water.Rainfed agriculture: 〉95% of farmed land (sub-Saharan Africa); 90% (Latin America); 75% (Near East and North Africa); 65% (East Asia); 60% (South Asia).Droughts and floods can cause severe crop loss. The Goddard Earth Sciences (GES) Data and Information Services Center (DISC), one of 12 NASA data centers, is located in Greenbelt, Maryland, USA. The NASA GES DISC is a major data archive center for global precipitation, water & energy cycles, atmospheric composition, and climate variability.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN62904 , Workshop of the International Precipitation Working Group (IPWG-9); Nov 05, 2018 - Nov 09, 2018; Seoul; Korea, Democratic People''s Republic of
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) archives and distributes rich collections of data on atmospheric greenhouse gases from multiple satellite missions and model results. Among those greenhouse gases, atmospheric methane is a powerful greenhouse gas contributing ~0.5 (W/m^2) to total radiative forcing, and its concentration has increased by about 150% since 1750. Observations or estimates of methane emissions typically have sparse spatial and temporal coverage. The lack of comprehensive spatial and temporal coverage of methane source and sink observations has made analyzing atmospheric methane trends challenging. In this study the GES DISC aims to provide the community with the resources to better understand changes in atmospheric methane concentrations and the underlying causes. We will utilize methane datasets from Atmospheric Infrared Sounder (AIRS) retrieved methane concentration and three Carbon Monitoring System (CMS) methane emission datasets (in regions of North America, Canada, and Mexico) to compare AIRS methane growth with corresponding CMS regional methane emissions. Comparisons of AIRS methane growth rates and CMS methane emissions suggests wetland emissions may impact methane growth rate trends over North America. As the record for CMS methane data is extended, both datasets can be used in conjunction to better understand impacts on atmospheric methane trends. GES DISCs new anomaly tool can also be used on select datasets to further quantify trends in atmospheric greenhouse gases.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN51798 , AMS Annual Meeting; Jan 07, 2018 - Jan 11, 2018; Austin, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN50842 , 2018 American Meteorological Society (AMS) Annual Meeting; Jan 07, 2018 - Jan 11, 2018; Austin, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: We present results from an analysis of seasonal phase shifts in the global precipitation and surface temperatures. We use data from the TRMM (Tropical Rainfall Measuring Mission) Multi-satellite Precipitation Algorithm (TMPA), and the Atmospheric Infrared Sounder (AIRS) on Aqua satellite, all hosted at NASA Goddard Earth Science Data and Information Services Center (GES DISC). We explore the information content and data usability by first aggregating daily grids from the entire records of both missions to pentad (5-day) series which are then processed using Singular Value Decomposition approach. A strength of this approach is the normalized principal components that can then be easily converted from real to complex time series. Thus, we can separate the most informative, the seasonal, components and analyze unambiguously for potential seasonal phase drifts. TMPA and AIRS records represent correspondingly 20 and 15 years of data, which allows us to run simple phase learning from the first 5 years of records and use it as reference. The most recent 5 years are then phase-compared with the reference. We demonstrate that the seasonal phase of global precipitation and surface temperatures has been stable in the past two decades. However, a small global trend of delayed precipitation, and earlier arrival of surface temperatures seasons, are detectable at 95% confidence level. Larger phase shifts are detectable at regional level, in regions recognizable from the Eigen vectors to having strong seasonal patterns. For instance, in Central North America, including the North American Monsoon region, confident phase shifts of 1-2 days per decade are detected at 95% confidence level. While seemingly symbolic, these shifts are indicative of larger changes in the Earth Climate System. We thus also demonstrate a potential usability scenario of Earth Science Data Records curated at the NASA GES DISC in partnership with Earth Science Missions.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN50721 , AMS Annual Meeting; Jan 07, 2018 - Jan 11, 2018; Austin, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...