ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (13)
  • Man/System Technology and Life Support  (9)
  • Chemistry and Materials (General)  (4)
  • 2020-2021
  • 2005-2009  (13)
  • 1
    Publication Date: 2019-07-12
    Description: Charging System Analyzer Program (Nascap-2K) is a comprehensive update, revision, and extension of several NASA and Air Force codes for predicting electrical charging of spacecraft. Nascap-2K integrates the capabilities and models included in four independent programs: NASCAP/LEO for low-Earth orbits, NASCAP/GEO for geosynchronous orbits, POLAR for auroral charging in polar orbits, and DynaPAC (Dynamic Plasma Analysis Code) for time-dependent plasma interactions. While each of the earlier codes works well for the range of problems for which it was designed, by today s standards these codes are difficult to learn, cumbersome to use, and overly restrictive in their geometric modeling capabilities. Nascap-2K incorporates these models into a single software package that includes spacecraft surface modeling, spatial gridding, environmental specifications, calculating scripting, and post-processing analysis and visualization. The provided material properties database includes values from earlier programs as well as values from recent measurements. Development of Nascap-2K continues with future capabilities to include interactions with dense plasma such as those produced by electric propulsion.
    Keywords: Man/System Technology and Life Support
    Type: MFS-31939-1/2056-1 , NASA Tech Briefs, November 2006; 17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: During post-flight processing of STS-116, damage to crewmember Robert Curbeam's Phase VI Glove Thermal Micrometeoroid Garment was discovered. This damage consisted of: loss of RTV-157 palm pads on the thumb area on the right glove, a 0.75 inch cut in the Vectran adjacent to the seam and thumb pad (single event cut), constituting the worst glove damage ever recorded for the U.S. space program. The underlying bladder and restraint were found not be damaged by this event. Evaluation of glove damage found that the outer Vectran fibers were sliced as a result of contact with a sharp edge or pinch point rather than general wear or abrasion (commonly observed on the RTV pads). Damage to gloves was also noted on STS-118 and STS-120. One potential source of EMU glove damages are sharp crater lips on external handrails, generated by micrometeoroid and orbital debris (MMOD) impacts. In this paper, the results of a hypervelocity impact (HVI) test program on representative and actual ISS handrails are presented. These tests were performed in order to characterize impact damage profiles on ISS handrails and evaluate alternatives for limiting risk to future missions. It was determined that both penetrating and non-penetrating MMOD impacts on aluminum and steel ISS handrails are capable of generating protruding crater profiles which exceed the heights required for EMU glove abrasion risk by an order of magnitude. Testing demonstrated that flexible overwraps attached to the outside of existing handrails are capable of limiting contact between hazardous crater formations and crewmember gloves during extravehicular activity (EVA). Additionally, replacing metallic handrails with high strength, low ductility, fiber reinforced composite materials would limit the formation of protruding crater lips on new ISS modules.
    Keywords: Man/System Technology and Life Support
    Type: JSC-17548 , 5th European Conference on Space Debris; Mar 30, 2009 - Apr 02, 2009; Darmstadt; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: A simple method to estimate the photocatalytic reactivity performance of spray-on titanium dioxide coatings for transmissive glass surfaces was developed. This novel technique provides a standardized method to evaluate the efficiency of photocatalytic material systems over a variety of illumination levels. To date, photocatalysis assessments have generally been conducted using mercury black light lamps. Illumination levels for these types of lamps are difficult to vary, consequently limiting their use for assessing material performance under a diverse range of simulated environmental conditions. This new technique uses an ultraviolet (UV) gallium nitride (GaN) light emitting diode (LED) array instead of a traditional black light to initiate and sustain photocatalytic breakdown. This method was tested with a UV-resistant dye (crystal violet) applied to a titanium dioxide coated glass slide. Experimental control is accomplished by applying crystal violet to both titanium dioxide coated slides and uncoated control slides. A slide is illuminated by the UV LED array, at various light levels representative of outdoor and indoor conditions, from the dye side of the slide. To monitor degradation of the dye over time, a temperature-stabilized white light LED, whose emission spectrum overlaps with the dye absorption spectrum, is used to illuminate the opposite side of the slide. Using a spectrometer, the amount of light from the white light LED transmitted through the slide as the dye degrades is monitored as a function of wavelength and time and is subsequently analyzed. In this way, the rate of degradation for photocatalytically coated versus uncoated slide surfaces can be compared. Results demonstrate that the dye absorption decreased much more rapidly on the photocatalytically coated slides than on the control uncoated slides, and that dye degradation is dependent on illumination level. For photocatalytic activity assessment purposes, this experimental configuration and methodology minimizes many external variable effects and enables small changes in absorption to be measured. This research also compares the advantages of this innovative LED light source design over traditional mercury black light systems and non- LED lamp approaches. This novel technology begins to address the growing need for a standard method that can assess the performance of photocatalytic materials before deployment for large scale, real world use.
    Keywords: Chemistry and Materials (General)
    Type: SSTI-2220-0184 , 30th SETAC (Society of Environmental Toxicology and Chemistry) North American Annual Meeting; Nov 19, 2009 - Nov 23, 2009; New Orleans, LA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: Auto-Generated Semantic Processing (AGSP) Services is a suite of software tools for automated generation of other computer programs, denoted cross-platform semantic adapters, that support interoperability of computer-based communication systems that utilize a variety of both new and legacy communication software running in a variety of operating- system/computer-hardware combinations. AGSP has numerous potential uses in military, space-exploration, and other government applications as well as in commercial telecommunications. The cross-platform semantic adapters take advantage of common features of computer- based communication systems to enforce semantics, messaging protocols, and standards of processing of streams of binary data to ensure integrity of data and consistency of meaning among interoperating systems. The auto-generation aspect of AGSP Services reduces development time and effort by emphasizing specification and minimizing implementation: In effect, the design, building, and debugging of software for effecting conversions among complex communication protocols, custom device mappings, and unique data-manipulation algorithms is replaced with metadata specifications that map to an abstract platform-independent communications model. AGSP Services is modular and has been shown to be easily integrable into new and legacy NASA flight and ground communication systems.
    Keywords: Man/System Technology and Life Support
    Type: KSC-13072 , NASA Tech Briefs, May 2009; 15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: This viewgraph presentation reviews the standards for space flight hardware based on human capabilities and limitations. The contents include: 1) Scope; 2) Applicable documents; 3) General; 4) Human Physical Characteristics and Capabilities; 5) Human Performance and Cognition; 6) Natural and Induced Environments; 7) Habitability Functions; 8) Architecture; 9) Hardware and Equipment; 10) Crew Interfaces; 11) Spacesuits; 12) Operatons: Reserved; 13) Ground Maintenance and Assembly: Reserved; 14) Appendix A-Reference Documents; 15) Appendix N-Acronyms and 16) Appendix C-Definition. Volume 2 is supported by the Human Integration Design Handbook (HIDH)s.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-18589 , NASA Advisory Council Meeting; Jul 14, 2009 - Jul 15, 2009; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: As humans venture farther from Earth for longer durations, it will become essential for those on the journey to have significant control over the scheduling of their own activities as well as the activities of their companion systems and robots. However, the crew will not do all the scheduling; timelines will be the result of collaboration with ground personnel. Emerging technologies such as in-space message buses, delay-tolerant networks, and in-space internet will be the carriers on which the collaboration rides. Advances in scheduling technology, in the areas of task modeling, scheduling engines, and user interfaces will allow the crew to become virtual scheduling experts. New concepts of operations for producing the timeline will allow the crew and the ground support to collaborate while providing safeguards to ensure that the mission will be effectively accomplished without endangering the systems or personnel.
    Keywords: Man/System Technology and Life Support
    Type: 5th International Workshop on Planning and Scheduling for Space (IWPSS); Oct 22, 2006 - Oct 25, 2006; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Electrical conductivity measurements were performed on single apoferritin and holoferritin molecules by conductive atomic force microscopy. Conductivity of self-assembled monolayer films of ferritin molecules on gold surfaces was also measured. Holoferritin was 5-25 times more conductive than apoferritin, indicating that for holoferritin most electron-transfer goes through the ferrihydrite core. With 1 V applied, the average electrical currents through single holoferritin and apoferritin molecules were 2.6 PA and 0.19 PA, respectively.
    Keywords: Chemistry and Materials (General)
    Type: Nano Letters; 5; 4; 571-577
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: This presentation in outline format for delivery to school age groups (i.e., K-12) reviews the importance of proper nutrition and exercise for everyone, with emphasis on space travel. It reviews the types of space food, the constraints of eating in space, and some of the challenges of exercising in space. It lists the materials displayed and used as teaching resources, as well as materials to be distributed.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: A method of studying the functions of all the genes of a given species of microorganism simultaneously has been developed in experiments on Saccharomyces cerevisiae (commonly known as baker's or brewer's yeast). It is already known that many yeast genes perform functions similar to those of corresponding human genes; therefore, by facilitating understanding of yeast genes, the method may ultimately also contribute to the knowledge needed to treat some diseases in humans. Because of the complexity of the method and the highly specialized nature of the underlying knowledge, it is possible to give only a brief and sketchy summary here. The method involves the use of unique synthetic deoxyribonucleic acid (DNA) sequences that are denoted as DNA bar codes because of their utility as molecular labels. The method also involves the disruption of gene functions through deletion of genes. Saccharomyces cerevisiae is a particularly powerful experimental system in that multiple deletion strains easily can be pooled for parallel growth assays. Individual deletion strains recently have been created for 5,918 open reading frames, representing nearly all of the estimated 6,000 genetic loci of Saccharomyces cerevisiae. Tagging of each deletion strain with one or two unique 20-nucleotide sequences enables identification of genes affected by specific growth conditions, without prior knowledge of gene functions. Hybridization of bar-code DNA to oligonucleotide arrays can be used to measure the growth rate of each strain over several cell-division generations. The growth rate thus measured serves as an index of the fitness of the strain.
    Keywords: Man/System Technology and Life Support
    Type: ARC-15345-1 , NASA Tech Briefs, February 2006; 23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: Formation of self-assembled monolayer (SAM) of 4-aminothiophenol (4-ATP) on polycrystalline platinum electrodes has been studied by surface analysis and electrochemistry techniques. The 4-ATP monolayer was characterized by cyclic voltammetry (CV), Raman spectroscopy, reflection absorption infrared (RAIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) experiments give an idea about the packing quality of the monolayer. RAIR and Raman spectra for 4-ATP modified platinum electrodes showed the characteristic adsorption bands for neat 4-ATP indicating the adsorption of 4-ATP molecules on platinum surface. The adsorption on platinum was also evidenced by the presence of sulfur and nitrogen peaks by XPS survey spectra of the modified platinum electrodes. High resolution XPS studies and RAIR spectrum for platinum electrodes modified with 4-ATP indicate that molecules are sulfur-bonded to the platinum surface. The formation of S-Pt bond suggests that ATP adsorption gives up an amino terminated SAM. Thickness of the monolayer was evaluated via angle-resolved XPS (AR-XPS) analyses. Derivatization of 4-ATP SAM was performed using 16-Br hexadecanoic acid.
    Keywords: Chemistry and Materials (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...