ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-19
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-19
    Description: Techniques are presented and their application illustrated for analysis of remotely sensed data collected with an aircraft carrying a multispectral cloud radiometer and an advanced microwave moisture sounder. The instruments were used on NASA high altitude flights to perform cloud field experiments. Sample IR and microwave brightness temperature data are provided as functions of the ice water path and of the ice water content. Quantitative models are described for deriving the cloud ice (or liquid) water content and the cloud geometric thickness from the radiometric data.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-19
    Description: Spectral differences in the extinction of the 10.8- and 12.6-micron bands of the IR window region, due to optically thin clouds, were found in the measurements made by both an airborne broadband IR radiometer and the IR interferometer spectrometer (IRIS) aboard the Nimbus-4 satellite; the extinction at 12.6 microns was significantly larger than that at 10.8 microns; both water and ice particles in the clouds can account for such spectral difference in extinction. Multiple scattering radiative transfer calculations of IRIS data revealed this spectral feature about 100 to 20 km away from the high-altitude cold clouds; it is assumed that this feature is related to the spreading of cirrus clouds. Based on this assumption, mean seasonal maps of the distribution of thin cirrus clouds over the oceans were deduced from the IRIS data. The maps show that such clouds are often present over the convectively active areas, such as ITCZ, SPCZ, and the Bay of Bengal during the summer monsoon.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Applied Meteorology (ISSN 0894-8763); 27; 379-399
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-19
    Description: In order to develop the remote sensing techniques to infer cloud physical parameters, a multispectral cloud radiometer (MCR) was mounted on a NASA high-altitude aircraft in conjunction with the Cooperative Convective Precipitation Experiment in 1981. The MCR has seven spectral channels, of which three are centered near windows associated with water vapor bands in the near infrared, two are centered near the oxygen A band at 0.76 microns, one is centered at the 1.14-micron water vapor band, and one is centered in the thermal infrared. The reflectance and temperature measured on May 31, 1981, are presented together with theoretical calculations. The results indicate that the MCR produces quality measurements. Therefore several cloud parameters can be derived with good accuracy. The parameters are the cloud-scaled optical thickness, cloud top pressure, volume scattering coefficient, particle thermodynamic phase, effective mean particle size, and cloud-top temperature.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 90; 10
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-19
    Description: Cloud ice water content and cloud geometrical thickness have been determined using a combination of near-infrared, thermal infrared and thermal microwave radiometric measurements. The radiometric measurements are from a Multispectral Cloud Radiometer, which has seven channels ranging from visible to thermal infrared, and an Advanced Microwave Moisture Sounder, which has four channels ranging from 90 to 183 GHz. Studies indicate that the microwave brightness temperatures depend not only on the amount of ice water content but also on the vertical distribution of ice water content. Studies also show that the low brightness temperature at 92 GHz for large ice water content is due to cloud reflection which reflects most of the irradiance incident at the cloud base downward. Therefore the 92 GHz channel detects a low brightness temperature at the cloud top.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Climate and Applied Meteorology (ISSN 0733-3021); 26; 878-884
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-19
    Description: A methodology for retrieving the emissivity, cloud cover and cloud top temperature of high-level, thin clouds is developed and described. In the thermal infrared windows, the outgoing radiances from the earth's atmosphere contain information about cloud emissivity and cloud top temperature. This information is clearly demonstrated in the brightness temperature difference curves of two window channels. For the purpose of illustration, two window channels centered at 810 and 930 cm are chosen to construct the brightness temperature difference curves for a range of cloud top temperatures. These curves vary for different cloud top temperatures, and along each of these curves the emissivity changes. The brightness temperature difference method is used in a simulation study to demonstrate the feasibility of retrieving the cloud top temperature and emissivity by the utilization of measurements in two window channels. As expected, a perfect retrieval is found if perfect measurements and ideal atmospheric conditions are assumed. If a random error, which has a normal distribution with a mean of zero and standard deviation of + or - 0.5 C, is imposed to the measurements, a reasonable retrieval is found for emissivity greater than 0.3. The algorithm has been applied to a limited amount of HIRS2 data, which has 3.7, 3.98 and 11 micron channels. The cloud top temperature, emissivity and cloud cover are determined by using these channels.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Climate and Applied Meteorology (ISSN 0733-3021); 26; 225-233
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-19
    Description: An algorithm has been developed for using the reflection of solar radiation in the oxygen A-band to determine cloud-top altitude. Because of multiple scattering and molecular absorption inside the cloud, the reflection of clouds is substantially modified in comparison with a mirror cloud, which is assumed to have a 100 percent reflection. To infer true cloud-top altitude, therefore, it is necessary to accurately estimate the amount of 'photon penetration'. Theoretical calculations indicate that the amount of photon penetration depends on the altitude, the scaled volume scattering coefficient, and the scaled optical thickness of the cloud. Algorithms using the reflection in the oxygen A-band to determine the cloud-top pressure have been applied to an aircraft field experiment in conjunction with CCOPE, 1981. Results of this study are very encouraging, especially for extended clouds.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Climate and Applied Meteorology (ISSN 0733-3021); 24; 539-546
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: Observations of cirrus and altocumulus clouds during the First International Satellite Cloud Climatology Project Regional Experiment (FIRE) are compared to theoretical models of cloud radiative properties. Three tests are performed. First, LANDSAT radiances are used to compare the relationship between nadir reflectance ot 0.83 micron and beam emittance at 11.5 microns with that predicted for model calculations using spherical and nonspherical phase functions. Good agreement is found between observations and theory when water droplets dominate. Poor agreement is found when ice particles dominate, especially using scattering phase functions for spherical particles. Even when compared to a laboratory measured ice particle phase function, the observations show increased side scattered radiation relative to the theoretical calculations. Second, the anisotropy of conservatively scattered radiation is examined using simultaneous multiple angle views of the cirrus from LANDSAT and ER-2 aircraft radiometers. Observed anisotropy gives good agreement with theoretical calculations using the laboratory measured ice particle phase function and poor agreement with a spherical particle phase function. Third, Landsat radiances at 0.83, 1.65, and 2.21 microns are used to infer particle phase and particle size. For water droplets, good agreement is found with King Air FSSP particle probe measurements in the cloud. For ice particles, the LANDSAT radiance observations predict an effective radius of 60 microns versus aircraft observations of about 200 microns. It is suggested that this descrepancy may be explained by uncertainty in the imaginary index of ice and by inadequate measurements of small ice particles by microphysical probes.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-TM-103468 , NAS 1.15:103468
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: Four year averages of the monthly mean global structure of the general circulation of the atmosphere are presented in the form of latitude-altitude, time-altitude, and time-latitude cross sections. The numerical values are given in tables. Basic parameters utilized include daily global maps of temperature and geopotential height for 18 pressure levels between 1000 and 0.4 mb for the period December 1, 1978 through November 30, 1982 supplied by NOAA/NMC. Geopotential heights and geostrophic winds are constructed using hydrostatic and geostrophic formulae. Meridional and vertical velocities are calculated using thermodynamic and continuity equations. Fields presented in this report are zonally averaged temperature, zonal, meridional, and vertical winds, and amplitude of the planetary waves in geopotential height with zonal wave numbers 1-3. The northward fluxes of sensible heat and eastward momentum by the standing and transient eddies along with their wavenumber decomposition and Eliassen-Palm flux propagation vectors and divergences by the standing and transient eddies along with their wavenumber decomposition are also given. Large interhemispheric differences and year-to-year variations are found to originate in the changes in the planetary wave activity.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-TM-100690 , REPT-87B0437 , NAS 1.15:100690
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: A principal advantage of the Barnes (1964, 1973) scheme is its theoretical response function through which the response of the analysis at a particular wavelength can be predicted. The objective of this paper is to examine the accuracy and efficiency of the Barnes scheme for different data distributions. Then, the 'actual' response is used to estimate the true attenuation of a wave in the filtered field.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Conference on Weather Analysis and Forecasting; Oct 02, 1989 - Oct 06, 1989; Monterey, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...