ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Annals of biomedical engineering 26 (1998), S. 103-116 
    ISSN: 1573-9686
    Keywords: Memory length ; Nonlinearity ; Measurement noise ; Ventilatory wave form ; Stress relaxation ; Volterra kernel ; Lung ; Tissue viscoelasticity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract The goal of this study is to quantitatively investigate how the memory length, order of nonlinearity, type of input, and measurement noise can affect the identification of the Volterra kernels of a nonlinear viscoelastic system, and hence the inference on system structure. We explored these aspects with emphasis on nonlinear lung tissue mechanics around breathing frequencies, where the memory length issue can be critical and a ventilatory input is clinically demanded. We adopted and examined Korenberg's fast orthogonal algorithm since it is a least-squares technique that does not demand white Gaussian noise input and makes no presumptions on the kernel shape and system structure. We then propose a memory autosearch method, which incorporates Akaike's final production error criterion into Korenberg's fast orthogonal algorithm to identify the memory length simultaneously with the kernels. Finally, we designed a special ventilatory flow input and evaluated its potential for the kernel identification of the nonlinear systems requiring oscillatory forcing. We found that the long memory associated with soft tissue viscoelasticity may prohibit correct identification of the higher-order kernels of the lung. However, the key characteristics of the first-order kernel may be revealed through averaging over multiple experiments and estimations. © 1998 Biomedical Engineering Society. PAC98: 8745Bp, 8710+e, 8350Gd, 8380Lz
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-9686
    Keywords: Pressure–volume relation ; Airways ; Alveoli ; Avalanches ; Surface tension ; Modeling ; Inflation ; Lung ; Lung: mechanics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract The pressure–volume (P-V) relationship of degassed lungs during the first inflation is different from that in consecutive inflations. We developed a mathematical model of the P-V curve of the first inflation by assuming that (1) central airways are open leading to many subtrees of n generations that are initially closed; (2) an airway opens when inflation pressure reaches the opening threshold pressure of that segment; and (3) the opening threshold pressures do not depend on airway generation. In this model, airway opening occurs in cascades or avalanches. To test the model which contains only two parameters, n and a pressure, Plow, at which at least one subtree completely opens, we measured the first inflation P-V curves of 15 excised and degassed rabbit lungs. By fitting these data, we found that n=17±5, Plow=23 ± 4 cmH2O, and that there is a wide distribution of threshold pressures for airways with diameters 〈2 mm. Analysis of the P-V curve in a lung which was lavaged with a liquid of constant surface tension and in which airways are presumably open demonstrated that the distribution of threshold pressures is narrow, and hence no avalanches occur during inflation. We conclude that in normal lungs the first inflation is dominated by avalanche behavior of airway opening providing information on the global distribution of threshold pressures and the average site of airway closure. © 1998 Biomedical Engineering Society. PAC98: 8745Hw, 8710+e
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...