Skip to main content
Log in

Factors Affecting Volterra Kernel Estimation: Emphasis on Lung Tissue Viscoelasticity

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The goal of this study is to quantitatively investigate how the memory length, order of nonlinearity, type of input, and measurement noise can affect the identification of the Volterra kernels of a nonlinear viscoelastic system, and hence the inference on system structure. We explored these aspects with emphasis on nonlinear lung tissue mechanics around breathing frequencies, where the memory length issue can be critical and a ventilatory input is clinically demanded. We adopted and examined Korenberg's fast orthogonal algorithm since it is a least-squares technique that does not demand white Gaussian noise input and makes no presumptions on the kernel shape and system structure. We then propose a memory autosearch method, which incorporates Akaike's final production error criterion into Korenberg's fast orthogonal algorithm to identify the memory length simultaneously with the kernels. Finally, we designed a special ventilatory flow input and evaluated its potential for the kernel identification of the nonlinear systems requiring oscillatory forcing. We found that the long memory associated with soft tissue viscoelasticity may prohibit correct identification of the higher-order kernels of the lung. However, the key characteristics of the first-order kernel may be revealed through averaging over multiple experiments and estimations. © 1998 Biomedical Engineering Society.

PAC98: 8745Bp, 8710+e, 8350Gd, 8380Lz

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Akaike, H. Fitting autoregressive models for prediction. Ann. Inst. Stat. Math.21:243-347, 1969.

    Google Scholar 

  2. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control.AC-19(6):716-723, 1974.

    Google Scholar 

  3. Barahona, M., and C. Poon. Detection of nonlinear dynamics in short, noisy time series. Nature (London)381(16):215- 217, 1996.

    Google Scholar 

  4. Barnas, G. M., D. Stamenović, and K. R. Lutchen. Lung and chest wall impedances in the dog in normal range of breathing: Effects of pulmonary edema. J. Appl. Physiol.73:1040- 1046, 1992.

    Google Scholar 

  5. Courellis, S. H., and V. Z. Marmarelis. Wiener analysis of Hodgkin-Huxley equation. In: Advanced Methods of Physiological System Modeling, Vol. 2, edited by V. Z. Marmarelis. New York: Plenum, 1989, pp. 273-297.

    Google Scholar 

  6. French, A. S., and M. J. Korenberg. A nonlinear cascade model for action potential encoding in an insect sensory neuron. Biophys. J.55:655-661, 1989.

    Google Scholar 

  7. French, A. S., M. J. Korenberg, M. Järvilehto, E. Kouvalainen, M. Juusolla, and M. Weckström. The dynamic nonlinear behavior of fly photoreceptor evoked by a wide range of light intensities. Biophys. J.65:832-839, 1993.

    Google Scholar 

  8. French, A. S., and V. Z. Marmarelis. Nonlinear neural mode analysis of action potential encoding in the cockroach tactile spine neuron. Biol. Cybern.73:425-430, 1995.

    Google Scholar 

  9. Giordano, A. A., and F. M. Hsu. Least square estimation with applications to digital signal processing. New York: Wiley, 1985, p. 412.

    Google Scholar 

  10. Hung, G. K., and L. W. Stark. The interpretation of kernels-an overview. Ann. Biomed. Eng.19:509-519, 1991.

    Google Scholar 

  11. Korenberg, M. J. Fast orthogonal algorithms for nonlinear system identification and time-series analysis. In: Advanced Methods of Physiological System Modeling, Vol. 2, edited by V. Z. Marmarelis. New York: Plenum, 1989, pp. 165- 177.

    Google Scholar 

  12. Korenberg, M. J. Parallel cascade identification and kernel estimation for nonlinear systems. Ann. Biomed. Eng.19(4):429-455, 1991.

    Google Scholar 

  13. Korenberg, M. J., and I. W. Hunter. The identification of nonlinear biological systems: Volterra kernel approaches. Ann. Biomed. Eng.24(4):250-268, 1996.

    Google Scholar 

  14. Krenz, W., and L. Stark. Interpretation of functional series expansions. Ann. Biomed. Eng.19:485-508, 1991.

    Google Scholar 

  15. Lee, Y. W., and M. Schetzen. Measurement of the Wiener kernels of nonlinear system by cross-correlation. Int. J. Control2:237-254, 1965.

    Google Scholar 

  16. Ljung, L. System Identification: Theory for the Users. Englewood Cliffs, NJ: Prentice-Hall, 1987, pp. 419-421.

    Google Scholar 

  17. Lutchen, K. R., B. Suki, Q. Zhang, F. Peták, B. Daróczy, and Z. Hantos. Airway and tissue mechanics during physiological breathing and bronchoconstriction in dogs. J. Appl. Physiol.77(1):373-385, 1994.

    Google Scholar 

  18. Lutchen, K. R., K. Yang, D. W. Kaczka, and B. Suki. Optimal ventilator waveform for estimating low frequency mechanical impedance in healthy and diseased subjects. J. Appl. Physiol.75(1):478-488, 1993.

    Google Scholar 

  19. Marmarelis, V. Z. Identification of nonlinear biological systems using Laguerre expansions of kernels. Ann. Biomed. Eng.21(6):573-589, 1993.

    Google Scholar 

  20. Marmarelis, P. Z., and V. Z. Marmarelis. Analysis of Physiological Systems: The White-noise Approach. New York: Plenum, 1978, p. 487.

    Google Scholar 

  21. Schetzen, M. The Volterra and Wiener theories of nonlinear systems. Malabar, FL: Krieger, 1989, p. 573.

    Google Scholar 

  22. Stein, R. B., and R. E. Kearney. Nonlinear behavior of muscle reflexes at the human ankle joint. J. Neurophysiol.73(1):65-72, 1995.

    Google Scholar 

  23. Suki, B., A. Barabási, and K. R. Lutchen. Lung tissue viscoelasticity: A mathematical framework and its molecular basis. J. Appl. Physiol.76(6):2749-2759, 1994.

    Google Scholar 

  24. Suki, B., and K. R. Lutchen. Pseudorandom signals to estimate apparent transfer and coherence functions of nonlinear systems: Applications to respiratory mechanics. IEEE Trans. Biomed. Eng.39(11):1142-1151, 1992.

    Google Scholar 

  25. Suki, B., Q. Zhang, and K. R. Lutchen. Relationship between frequency and amplitude dependence in the lung: A nonlinear block-structured modeling approach. J. Appl. Physiol.79(2):660-671, 1995.

    Google Scholar 

  26. Victor, J. D. The fractal dimension of a test signal: Implications for system identification procedures. Biol. Cybern.57:421-426, 1987.

    Google Scholar 

  27. Victor, J., and R. Shapley. A method of nonlinear analysis in the frequency domain. Biophys. J.29:459-484, 1980.

    Google Scholar 

  28. Watanabe, A., and L. Stark. Kernel method for nonlinear analysis: Identification of a biological control system. Math. Biosci.27:99-108, 1975.

    Google Scholar 

  29. Westwick, D. T., and R. E. Kearney. Identification of multiple-input nonlinear systems using non-white test signals. In: Advanced Methods of Physiological System Modeling, Vol. 3, edited by V. Z. Marmarelis. New York: Plenum, 1994, pp. 163-178.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Suki, B., Westwick, D.T. et al. Factors Affecting Volterra Kernel Estimation: Emphasis on Lung Tissue Viscoelasticity. Annals of Biomedical Engineering 26, 103–116 (1998). https://doi.org/10.1114/1.82

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.82

Navigation