ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-10
    Description: A web site dedicated to Mars Mineral Spectroscopy has been established at http://www.mtholyoke.edu/go/mars. Its goal is to provide an easily accessible data set of Mossbauer spectra of minerals collected over a range of temperatures, to provide suitable analog spectra for data acquired on remote surfaces such as Mars. Complementing these data (eventually) will be both reflectance FTIR data, collected at Brown University's RELAB facility, and Raman spectra to be collected by Jill Pasteris at Washington University St. Louis. Through our Education link, we provide information for those wishing to learn about how Mossbauer and other types of spectroscopy work. Our emphasis is to study only well-characterized mineral samples that represent typical rock-forming occurrences such as might exist on Mars and other terrestrial bodies in our solar system.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXV: Missions and Instruments: Hopes and Hope Fulfilled; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-10
    Description: Moessbauer spectrometers will be used on the upcoming MER/Athena and Mars Express/ Beagle 2 landers to identify and quantify relative amounts of iron-bearing minerals and determine Fe3+/Fe2+ ratios, allowing more realistic modeling of Martian mineralogy and geochemistry. To properly interpret the spectra acquired by these instruments, we must understand the Mossbauer parameters of minerals that we might expect to find on Mars. We present here a summary of predicted Fe-bearing minerals that might be observed by the MER Moessbauer spectrometers, based upon previous and our own on-going work.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-10
    Description: Moessbauer spectrometers will be used on martian landers and rovers to identify and quantify relative amounts of Fe-bearing minerals, as well as to determine their Fe(3+)/Fe(2+) ratios, allowing more realistic modeling of martian mineralogy and evolution. However, derivation of mineral modes, Fe(3+)/Fe(2+) ratios, and phase identification via Moessbauer spectroscopy (MS) does have limitations. We discuss here the exciting potential of MS for remote planetary exploration, as well as constraints on interpretation of remote Moessbauer data.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-11
    Description: Olivine and pyroxene are the major ferromagnesian minerals in most meteorite types and in mafic igneous rocks that are dominant at the surface of the Earth. It is probable that they are the major mineralogical components at the surface of any planetary body that has undergone differentiation processes. In situ mineralogical studies of the rocks and soils on Mars suggest that olivine is a widespread mineral on that planet s surface (particularly at the Gusev site) and that it has been relatively unaffected by alteration. Thus an understanding of the characteristics of Mossbauer spectra of olivine is of great importance in interpreting MER results. However, variable temperature Mossbauer spectra of olivine, which are needed to quantify recoil-free fraction effects and to understand the temperature dependence of olivine spectra, are lacking in the literature. Thus, we present here a study of the temperature dependence and recoil-free fraction of a series of synthetic olivines.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 18; LPI-Contrib-1234-Pt-18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-11
    Description: Mossbauer spectrometers on the Spirit and Opportunity rovers have played a valuable role in identifying mineralogy at both the Gusev and Meridiani landing sites. Key to the application of Mossbauer results is the issue of how accurately the peak positions, on which the mineral identifications are based, can be determined. Remote Mossbauer spectroscopy has by necessity some unusual experimental constraints that may influence the confidence with which peak positions can be fit. We present here an analysis of the effects of variable temperature and short duration run times on spectral resolution.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 17; LPI-Contrib-1234-Pt-17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-11
    Description: Hydrous iron sulfates, which form as alteration products of sulfides, are rare on Earth. On Mars, the low temperature and pH found in the martian permafrost create ideal conditions for the formation of this group of minerals [1], which includes such phases as coquimbite (Fe2(SO4) 9H2O) and amarantite (FeSO4(OH) 3H2O). Viking, Mars Pathfinder, MER and OMEGA data [e.g., [2]] have all indicated the presence of high sulfur contents on the surface of Mars, but the mineralogy of the sulfur-rich phases has not been well constrained. Recent work by [3] suggests that hydrous iron sulfates might satisfy the Martian thermal emission, vis-near IR, and M ssbauer spectra. These data suggest that sulfide and sulfate minerals might be significant contributors to all types of spectra acquired on the Martian surface.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 17; LPI-Contrib-1234-Pt-17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...