ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN44857 , NASA Exploration Science Forum (NESF); Jul 18, 2017 - Jul 20, 2017; Moffett Field; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-13
    Description: The ability to analyze heterogeneous rock samples at fine spatial scales would represent a powerful addition to our planetary in situ analytical toolbox. This is particularly true for Mars, where the signatures of past environments and, potentially, habitability are preserved in chemical and morphological variations across sedimentary layers and among mineral pr.ases in a given rock specimen. On Earth, microbial life often associates with surfaces at the interface of chemical nutrients, and ultimately retains sub-millimeter to millimeter-scale layer confinement in fossilization. On Mars, and possibly other bodies, trace chemical markers (elemental, organic/molecular, isotopic, chiral, etc.) and fine-scale morphological markers (e.g., micro-fossils) may he too subtle, degraded, or ambiguous to be detected, using miniaturized instrumentation, without some concentration or isolation. This is because (i) instrument sensitivity may not be high enough to detect trace markers in bulk averages; and (ii) instrument s~lectiviry may not be sufficient to distinguish such markers from interfering/counteracting signals from the bulk. Moreover from a fundamental chemostratigraphic perspective there would be a great benefit to assessing specific chemical and stable isotopic gradients, over millimeter-to-centimeter scales and beyond, with higher precision than currently possible in situ. We have developed a precision subsampling system (PSS) that addresses this need while remaining relatively flexible to a variety of instruments that may take advantage of the capability on future missions. The PSS is relevant to a number of possible lander/rover missions, especially Mars Sample Return. Our specific PSS prototype is undergoing testing under Mars ambient conditions, on a variety of natural analog rocks and rock drill cores, using a set of complementary flight-compatible measurement techniques. The system is available for testing with other contact instruments that may benefit from precision sampling.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.CPR.6531.2012 , GSFC.CPR.6532.2012 , Concepts and Approaches for Mars Exploration; Jun 12, 2012 - Jun 14, 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-12-21
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: JPL-CL-16-1841 , CIMTEC 2016 - Forum on New Materials; Jun 05, 2016 - Jun 09, 2016; Perugia; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: NASA's Resource Prospector (RP) mission is intended to characterize the three-dimensional nature of volatiles in lunar polar regions and permanently shadowed regions. RP is slated to carry two instruments for prospecting purposes. These include the Neutron Spectrometer System (NSS) and Near-Infrared Volatile Spectrometer System (NIRVSS). A Honybee Robotics drill (HRD) is intended to sample to depths of 1 m, and deliver a sample to a crucible that is processed by the Oxygen Volatile Extraction Node (OVEN) where the soil is heated and evolved gas is delivered to the gas chromatograph / mass spectrometer of the Lunar Advanced Volatile Analysis system (LAVA). For several years, tests of various sub-systems have been undertaken in a large cryo-vacuum chamber facility (VF-13) located at Glenn Research Center. In these tests a large tube (1.2 m high x 25.4 cm diameter) is filled with lunar simulant, NU-LHT-3M, prepared with known abundances of water. There are thermo-couples embedded at different depths, and also across the surface of the soil tube. The soil tube is placed in the chamber and cooled with LN2 as the pressure is reduced to approx.5-6x10(exp -6) Torr. Here we discuss May 2016 tests where two soil tubes were prepared and placed in the chamber. Also located in the chamber were 5 crucibles, an Inficon mass spectrometer, and a trolly permitting x-y translation, where the HRD and NIRVSS, were mounted. The shroud surrounding the soil tube was held at different temperatures for each tube to simulate a warm and cold lunar environment.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN38616 , Lunar and Planetary Science Conference; Mar 20, 2017 - Mar 24, 2017; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: One of the most pressing current questions in space science is whether life has ever arisen anywhere else in the universe. Water is a critical prerequisite for all life-as-we-know-it, thus the possible exploration targets for extraterrestrial life are bodies that have or had copious liquid: Mars, Europa, and Enceladus. Due to the oxidizing nature of Mars' surface, as well as subsurface liquid water reservoirs present on Europa and Enceladus, the search for evidence of existing life must likely focus on subsurface locations, at depths sufficient to support liquid water or retain biologic signatures. To address these questions, an Auto-Gopher sampler has been developed that is a wireline type drill. This drill is suspended on a tether and its motors and mechanisms are built into a tube that ends with a coring bit. The tether provides the mechanical connection to a rover/lander on a surface as well as power and data communication. Upon penetrating to a target depth, the drill is retracted from the borehole, the core is deposited into a sample transfer system, and the drill is lowered back into the hole. Wireline operation sidesteps one of the major drawbacks of traditional continuous drill string systems by obviating the need for multiple drill sections, which add significantly to the mass and the complexity of the system (i.e. penetration rate was 40 cm per hour). Drilling to 2 meter depth and recovering of cores every 10 cm took a total time of 15 hours (a single step of drilling 10 cm and retrieving the core was 45 minutes). Total energy to reach the 2 m depth was 500 Whr. The Weight on Bit was limited to less than 70 Newton. The core recovery was 100%.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science Conference (LPSC 2013); Mar 18, 2013 - Mar 22, 2013; The Woodlands, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. The limited mass, energy and manpower in planetary drilling situations makes application of terrestrial drilling techniques problematic. The Drilling Automation for Mars Exploration (DAME) project is developing drilling automation and robotics for projected use in missions to the Moon and Mars in the 2011-15 period. This has been tested recently, drilling in permafrost at a lunar/martian analog site (Haughton Crater, Devon Island, Canada).
    Keywords: Lunar and Planetary Science and Exploration
    Type: 37th Lunar and Planetary Sciences Conference; Mar 13, 2006 - Mar 17, 2006; League City, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: In-Situ Resource Utilization (ISRU) enables future planetary exploration by using local resources to acquire mission consumables. Water-bearing regolith has been identified on the moon in the permanently shadowed craters. Missions designed to retrieve these resources will require testing in relevant environments. The Planetary Surface Simulation Facility (otherwise known as VF-13) at the NASA Glenn Research Center can create these relevant environments for ground based testing. This dirty thermal vacuum chamber is 3.6 m tall, 1.5 m in diameter, and can achieve pressures on the order of 10-6 Torr. The internal wall of the chamber and the soil bin are separately temperature controlled using liquid nitrogen. For the past four years, the chamber has been used by NASA's Resource Prospector to characterize volatiles loss during regolith sampling operations. Observations from 43 samples suggest agitating the sample during delivery has a significant impact on the volatiles loss. Calculated mass loss rates are consistent for similar size samples. However, the variations in moisture loss do not clearly correlate with measured conditions. Continued testing will examine the impacts of the mechanical sample delivery process.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GRC-E-DAA-TN46750 , 2018 ASCE Earth and Space Conference; Apr 12, 2018; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...