ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (39)
  • 1
    Publication Date: 2011-08-24
    Description: Infrared spectral images of Jupiter's volcanic moon Io, acquired during the October and November 1999 and February 2000 flybys of the Galileo spacecraft, were used to study the thermal structure and sulfur dioxide distribution of active volcanoes. Loki Patera, the solar system's most powerful known volcano, exhibits large expanses of dark, cooling lava on its caldera floor. Prometheus, the site of long-lived plume activity, has two major areas of thermal emission, which support ideas of plume migration. Sulfur dioxide deposits were mapped at local scales and show a more complex relationship to surface colors than previously thought, indicating the presence of other sulfur compounds.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 288; 5469; 1201-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-29
    Description: The accurate determination of the Mars pole vector derived from Pathfinder and Viking Lander radio data, together with the VSOP87 representation of planetary orbits, have been applied to a new evaluation of the right ascension of the "fictitious mean sun" (FMS) at Mars. With DELTA t (sub J2000) the elapsed time in days from the J2000 epoch (J.D.2451545.0 (sup TT), alpha FMS = 270 degrees.3863 + 0.52403840(degrees/d) (raised dot) DELTA T (sub j2000) - 4 x 10 (exp -13) (degrees/d (sup 2)) (raised dot) DELTA t (sup 2) (sub J2000) represents a best least-squares quadratic fit of the FMS, including aberration, to each instance of the four equinox and solstice passages for each of 134 Mars orbits spanning the calendar years 1874-2127. The implied tropical orbit period for Mars, 686.9726 (sup d), closely agrees with the recent evaluations. Together with the Pathfinder radio determination of the Mars sidereal rotation, the derived FMS rate corresponds to a mean solar day (or "sol") of 1.027491251 (sup d). The new FMS determination would serve to define the Mean Solar Time at Mars to the nearest tenth-second, according to historical conventions originally established for terrestrial time keeping, once the Mars prime meridian defined by the crater Airy-O is navigated to the same accuracy. For convenient reference to current epochs, 2000 Jan 06 00:00 UTC (= MJD 51549.000 (sup UTC)) corresponds to a coincidence of (alpha (sub FMS)) and the rotation angle of the crater Airy-O measured with respect to the Mars equinox (i.e. "mean solar midnight" on the planet's prime meridian), to within the current uncertainty of several seconds in the locational definition of the planet's cartographic grid. As a further result of the analysis, the consistently derived Mars obliquity of date is epsilon = 25 degrees.192 + 3.45 x l0 (exp -7)(degrees/d)(raised dot) DELTA t (sub J2000). An improved analytic recipe for the calculation of the solar areocentric longitude (L (sub s)) of Mars to an accuracy of 0 degrees.01 is also provided, accounting for the primary perturbations of Earth, Jupiter, and Venus, which may in turn be applied to an efficient evaluation of Mars local true solar time (LTST) to within the uncertainty of the inertial position of the Mars prime meridian. For specific applications to the data archives for landed Mars spacecraft, simple conversion formulae are given for the determination of the Viking "Local Lander Time" and the Pathfinder "Local True Solar Time" in terms of the terrestrial calendar date and UTC.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-10-02
    Description: The first of two relatively close Iapetus flybys in Cassini's primary mission occured on Dec 31, 2004 18:49 UTC near apoapsis from orbit "B" to "C" at an altitude of approximately 123,400 km over the northern leading hemisphere, resulting in a minimum pixel scale of 740 m for the ISS narrow angle camera (NAC). Data revealed details of a greater than 1300-km-long ridge that had been discovered just one week earlier in optical navigation images. Individual mountains within the western part of the ridge reach heights of approximately 20 km over surrounding terrain. The data set provides constraints on the origin of the albedo dichotomy. It appears very likely that the dark material is overlying an ice crust, but no evidence for emplacement of dark material via surface flows is apparent. Instead, signs for dark-material emplacement through processes that included ballistic transportation are visible. No bright-floor ("punch-through") craters have been found on the dark hemisphere. The ridge discovery may revive the idea of an endogenic origin of the dark side.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 4; LPI-Contrib-1234-Pt-4
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-10-02
    Description: In May and June of 1994, the NASA/DoD Clementine Mission acquired global, 11- band, multispectral observations of the lunar surface using the ultraviolet-visible (UVVIS) and near-infrared (NIR) camera systems. The global 5-band UVVIS Digital Image Model (DIM) of the Moon at 100 m/pixel was released to the Planetary Data System (PDS) in 2000. The corresponding NIR DIM has been compiled by the U.S. Geological Survey for distribution to the lunar science community. The recently released NIR DIM has six spectral bands (1100, 1250, 1500, 2000, 2600, and 2780 nm) and is delivered in 996 quads at 100 m/pixel (303 pixels/degree). The NIR data were radiometrically corrected, geometrically controlled, and photometrically normalized to form seamless, uniformly illuminated mosaics of the lunar surface.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-10-02
    Description: The Mars Reconnaissance Orbiter (MRO) is expected to launch in August 2005, arrive at Mars in March 2006, and begin the primary science phase in November 2006. MRO will carry a suite of remote-sensing instruments and is designed to routinely point off-nadir to precisely target locations on Mars for high-resolution observations. The mission will have a much higher data return than any previous planetary mission, with 34 Tb of returned data expected in the first Mars year in the mapping orbit. The mapping orbit is nearly polar, 255 x 320 km above the surface, 12 orbits per day. The HiRISE camera, features a 0.5 m telescope, 12 m focal length, and 14 CCDs. Basic capabilities are summarized.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-10-02
    Description: Since the two Voyagers passed by Jupiter in 1979, it has been known that volcanic activity is ubiquitous on the surface of Io. With over 400 volcanic centers, Io is even more volcanically active than the earth with massive flood basalt-style eruptions and komatitite lavas a common occurrence. Additionally, some volcanoes appear to be giant lava lakes, with violent activity churning the crust of the lake for periods of 20 years or more. Finally, sulfur is believed to play a large role in Io's volcanism, be it as a primary lava or as a secondary product of large, high-temperature eruptions. By studying one volcano in particular, Gish Bar Patera, one can observe many of these characteristics in one volcanic center.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-10-02
    Description: The Mars Reconnaissance Orbiter (MRO) is expected to launch in August 2005, arrive at Mars in March 2006, and begin the primary science phase in November 2006. MRO will carry a suite of remote-sensing instruments and is designed to routinely point off-nadir to precisely target locations on Mars for high-resolution observations. The mission will have a much higher data return than any previous planetary mission, with 34 Tbits of returned data expected in the first Mars year in the mapping orbit (255 x 320 km). The HiRISE camera features a 0.5 m telescope, 12 m focal length, and 14 CCDs. We expect to acquire approximately 10,000 observations in the primary science phase (approximately 1 Mars year), including approximately 2,000 images for 1,000 stereo targets. Each observation will be accompanied by a approximately 6 m/pixel image over a 30 x 45 km region acquired by MRO s context imager. Many HiRISE images will be full resolution in the center portion of the swath width and binned (typically 4x4) on the sides. This provides two levels of context, so we step out from 0.3 m/pixel to 1.2 m/pixel to 6 m/pixel (at 300 km altitude). We expect to cover approximately 1% of Mars at better than 1.2 m/pixel, approximately 0.1% at 0.3 m/pixel, approximately 0.1% in 3 colors, and approximately 0.05% in stereo. Our major challenge is to find the dey contacts, exposures and type morphologies to observe.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Third International Conference on Mars Polar Science and Exploration; LPI-Contrib-1184
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-10-02
    Description: Science return from the Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) will be optimized by maximizing science participation in the experiment. MRO is expected to arrive at Mars in March 2006, and the primary science phase begins near the end of 2006 after aerobraking (6 months) and a transition phase. The primary science phase lasts for almost 2 Earth years, followed by a 2-year relay phase in which science observations by MRO are expected to continue. We expect to acquire approx. 10,000 images with HiRISE over the course of MRO's two earth-year mission. HiRISE can acquire images with a ground sampling dimension of as little as 30 cm (from a typical altitude of 300 km), in up to 3 colors, and many targets will be re-imaged for stereo. With such high spatial resolution, the percent coverage of Mars will be very limited in spite of the relatively high data rate of MRO (approx. 10x greater than MGS or Odyssey). We expect to cover approx. 1% of Mars at approx. 1m/pixel or better, approx. 0.1% at full resolution, and approx. 0.05% in color or in stereo. Therefore, the placement of each HiRISE image must be carefully considered in order to maximize the scientific return from MRO. We believe that every observation should be the result of a mini research project based on pre-existing datasets. During operations, we will need a large database of carefully researched 'suggested' observations to select from. The HiRISE team is dedicated to involving the broad Mars community in creating this database, to the fullest degree that is both practical and legal. The philosophy of the team and the design of the ground data system are geared to enabling community involvement. A key aspect of this is that image data will be made available to the planetary community for science analysis as quickly as possible to encourage feedback and new ideas for targets.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-10-02
    Description: The High Resolution Imaging Experiment, described by McEwen et al. and Delamere et al., will fly on the Mars 2005 Orbiter. In conjunction with the NASA Mars E/PO program, the HiRISE team plans an innovative and aggressive E/PO effort to complement the unique high-resolution capabilities of the camera. The team is organizing partnerships with existing educational outreach programs and museums and plans to develop its own educational materials. In addition to other traditional E/PO activities and a strong web presence, opportunities will be provided for the public to participate in image targeting and science analysis. The main aspects of our program are summarized.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-10-02
    Description: We report the initial results obtained by the Galileo Near-Infrared Mapping Spectrometer during the fly-bys of Io. Our data reveals, for the first time, the detailed thermal structure of hot spots and the local distribution of SO2 frost.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXI; LPI-Contrib-1000
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...