ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-08
    Description: In spring 1993, microwave radiometer-based tropospheric calibration was provided for the Mars Observer gravitational wave search. The Doppler shifted X-band radio signals propagating between Earth and the Mars Observer satellite were precisely measured to determine path length variations that might signal passage of gravitational waves. Experimental sensitivity was restricted by competing sources of variability in signal transit time. Principally, fluctuations in the solar wind and ionospheric plasma density combined with fluctions in tropospheric refractivity determined the detection limit. Troposphere-induced path delay fluctions are dominated by refractive changes caused by water vapor inhomogeneities blowing through the signal path. Since passive microwave remote sensing techniques are able to determine atmospheric propagation delays, radiometer-based tropospheric calibration was provided at the Deep Space Network Uranus tracking site (DSS-15). Two microwave water vapor radiometers (WVRs), a microwave temperature profiler (MTP), and a ground based meterological station were deployed to determine line-of-sight vapor content and vertical temperature profile concurrently with Mars Observer tracking measurements. This calibration system provided the capability to correct Mars Observer Doppler data for troposphere-induced path variations. We present preliminary analysis of the Doppler and WVR data sets illustrating the utility of WVRs to calibrate Doppler data. This takes an important step toward realizing the ambitious system required to support future Ka-band Cassini satellite gravity wave tropospheric calibration system.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: NASA is researching advanced technologies for future exploration missions using intelligent swarms of robotic vehicles. One of these missions is the Autonomous Nan0 Technology Swarm (ANTS) mission that will explore the asteroid belt using 1,000 cooperative autonomous spacecraft. The emergent properties of intelligent swarms make it a potentially powerful concept, but at the same time more difficult to design and ensure that the proper behaviors will emerge. NASA is investigating formal methods and techniques for verification of such missions. The advantage of using formal methods is the ability to mathematically verify the behavior of a swarm, emergent or otherwise. Using the ANTS mission as a case study, we have evaluated multiple formal methods to determine their effectiveness in modeling and ensuring desired swarm behavior. This paper discusses the results of this evaluation and proposes an integrated formal method for ensuring correct behavior of future NASA intelligent swarms.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-18
    Description: Observations of OH are a useful proxy of the water production rate (Q(sub H2O)) and outflow velocity (V(sub out)) in comets. From wide field images taken on 03/28/1997 and 04/08/1997 that capture the entire scale length of the OH coma of comet C/1995 O1 (Hale-Bopp), we obtain Q(sub H2O) from the model-independent method of aperture summation. With an adaptive ring summation algorithm, we extract the radial brightness distribution of OH 0-0 band emission out to cometocentric distances of up to 10(exp 6) km, both as azimuthal averages and in quadrants covering different position angles relative to the comet-Sun line. These profiles are fit using both fixed and variable velocity 2-component spherical expansion models to estimate V(sub OH) with increasing distance from the nucleus. The OH coma of Hale-Bopp was more spatially extended than previous comets, and this extension is best matched by a variable acceleration of H2O and OH that acted across the entire coma, but was strongest within 1-2 x 10(exp 4) km from the nucleus. Our models indicate that V(sub OH) at the edge of our detectable field of view (10(exp 6) km) was approx. 2-3 times greater in Hale-Bopp than for a 1P/Halley-class comet at 1 AU, which is consistent with the results of more sophisticated gas-kinetic models, extrapolation from previous observations of OH in comets with Q(sub H2O) greater than 10(exp 29)/s , and direct radio measurements of the outer coma Hale-Bopp OH velocity. The most probable source of this acceleration is thermalization of the excess energy of dissociation of H2O and OH over an extended collisional coma. When the coma is broken down by quadrants in position angle, we find an azimuthal asymmetry in the radial distribution that is characterized by an increase in the spatial extent of OH in the region between the orbit-trailing and anti-sunward directions. Model fits specific to this area and comparison with radio OH measurements suggest greater acceleration here, with V(sub OH) approx. 1.5 times greater at a 10(exp 6) km cometocentric distance than elsewhere in the coma. We discuss several mechanisms that may have acted within the coma to produce the observed effect.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-18
    Description: Ancient thermal spring sites have several features which make them significant targets in a search for past life. Chemical (including redox) reactions in hydrothermal systems possibly played a role in the origin of life on Earth and elsewhere. Spring waters frequently contain reduced species (sulfur compounds, Fe(sup +2), etc.) which can provide chemical energy for organic synthesis. Relatively cool hydrothermal systems can sustain abundant microbial life (on Earth, at temperatures greater than 110 C). A spring site on Mars perhaps might even have maintained liquid water for periods sufficiently long to sustain surface-dwelling biota had they existed. On Earth, a variety of microbial mat communities can be sampled along the wide range of temperatures surrounding the spring, thus offering an opportunity to sample a broad biological diversity. Thermal spring waters frequently deposit minerals (carbonates, silica, etc.) which can entomb and preserve both fluid inclusions and microbial communities. These deposits can be highly fossiliferous and preserve biological inclusions for geologically long periods of time. Such deposits can cover several square km on Earth, and their distinctive mineralogy (e.g., silica- and/or carbonate-rich) can contrast sharply with that of the surrounding region. As with Martian volcanoes, Martian thermal spring complexes and their deposits might typically be much larger than their counterparts on Earth. Thus Martian spring deposits are perhaps readily detectable and even accessible. Elysium Planitia is an example of a promising region where hydrothermal activity very likely remobilized ground ice and sustained springs.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AGU Fall Meeting; Dec 11, 1995 - Dec 15, 1995; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The Gravity Recovery and Interior Laboratory (GRAIL) mission has provided lunar gravity with unprecedented accuracy and resolution. GRAIL has produced a high-resolution map of the lunar gravity field while also determining tidal response. We present the latest gravity field solution and its preliminary implications for the Moon's interior structure, exploring properties such as the mean density, moment of inertia of the solid Moon, and tidal potential Love number k2. Lunar structure includes a thin crust, a deep mantle, a fluid core, and a suspected solid inner core. An accurate Love number mainly improves knowledge of the fluid core and deep mantle. In the future GRAIL will search for evidence of tidal dissipation and a solid inner core.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN7319 , 44th Lunar and Planetary Science Conference; Mar 18, 2013 - Mar 22, 2013; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: A suite of automated scientific instruments (the Apollo Lunar Surface Experiment Package, or ALSEP) was installed at each of the landing sites of Apollo 12, 14, 15, 16, and 17 from 1969 to 1972. They operated from deployment until decommissioning on 30 September 1977. These data were continuously transmitted to Earth and saved on the Range Tapes, which were recorded at the Manned Space Flight Network stations. These data were also broken out by experiment and sent to the experiment Principal Investigators on what were called the P.I. Tapes. Starting in April 1973 the Range Tape data were stored in digital format on 7-track magnetic tapes, the ARCSAV Tapes. In February 1976, the handling of the Range Tapes was transferred to UT Galveston. They produced 9-track tapes referred to as the Work Tapes. Following the Apollo program the Range and ARCSAV tapes, which were never archived, were lost. The Work Tapes were archived at the National Space Science Data Center (NSSDC). Some investigators archived their individual experiment data with NSSDC as well, but much of the data had minimal documentation, were not in digital form, or were stored in difficult to translate formats. Data from many experiments were never delivered to the NSSDC. The Lunar Data Project was started to address the problem of both missing and not readily usable data. Our effort has resulted in recovery of some of the ARCSAV tapes, recovery and digitization of a large volume of Apollo scientific and technical documentation, and restoration of many ALSEP and other Apollo data collections. Restoration involves deciphering formats, assembling necessary ancillary data (metadata), and packaging data in digital format to be archived with the Planetary Data System (PDS). Recovery of the data from the ARCSAV tapes involved having the tapes read on special equipment and extracting the individual experiment data out of the integrated data stream. We will report on the history and status of the various recovery efforts.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN59798 , 2018 AGU Fall Meeting; Dec 10, 2018 - Dec 14, 2018; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: We performed high-dispersion near-infrared spectroscopic observations of comet C/2010 G2 (Hill) at 2.5 AU from the Sun using NIRSPEC (R approx. equal to 25,000) at the Keck II Telescope on UT 2012 January 9 and 10, about a week after an outburst had occurred. Over the two nights of our observations, prominent emission lines of CH4 and C2H6, along with weaker emission lines of H2O, HCN, CH3OH, and CO were detected. The gas production rate of CO was comparable to that of H2O during the outburst. The mixing ratios of CO, HCN, CH4, C2H6, and CH3OHwith respect to H2O were higher than those for normal comets by a factor of five or more. The enrichment of COand CH4 in comet Hill suggests that the sublimation of these hypervolatiles sustained the outburst of the comet. Some fraction of water in the inner coma might exist as icy grains that were likely ejected from nucleus by the sublimation of hypervolatiles. Mixing ratios of volatiles in comet Hill are indicative of the interstellar heritage without significant alteration in the solar nebula.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN21926 , The Astrophysical Journal (ISSN 2041-8205) (e-ISSN 2041-8213); 788; 2; 110
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-13
    Description: NASA's science mission directorate has put increasing emphasis on innovative, smaller, and lower cost missions to achieve their science objectives. One example of this was the recent call by the Planetary Science Division for cube and small satellite concepts expected to cost $100M or less, not including launch and weighing less than 180kg. Over 100 proposals were submitted suggesting that indeed this is a size of mission worthy of being considered in future planning. Nineteen missions were selected for study, one being a long-lived Venus mission called SAEVe, for Seismic and Atmospheric Exploration of Venus. The science objectives and relevance of SAEVe include: Is Venus seismically active? What can we learn about its crust (thickness and composition) and its interior (lithosphere, mantle, and core)? What can be learned about its evolutionary history or about the planet / atmosphere interactions? SAEVe begins to address these science questions with simple, but capable, instrumented probes that can survive on the surface of Venus and take temporal measurements over months something never attempted before. The data returned will further our understanding of the solar system and Earth, and aid in meeting the NASA Science Plan goal to ascertain the content, origin, and evolution of the solar system and the chemical and physical processes in our solar system. SAEVe is delivered to Venus as a ride-along on another mission to Venus. Its two small probes are placed into the Venus atmosphere via a single Stardust-like entry capsule, are ejected at different times, free fall, and decelerate in the thickening atmosphere to touchdown under 8 m/s2 or less. The probes will begin taking measurements and transmitting important parameters at or near the surface and will focus on measurements like seismic activity, heat flux, wind speed and direction, basic chemical abundances, temperature, and pressure. At preset intervals, the probes acquire the science measurements and beam the data to the orbiting host spacecraft. SAEVe will serve as a highly capable precursor and pave the way for larger and more complex lander missions to explore Venus.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GRC-E-DAA-TN49329 , Venus Exploration Analysis Group (VEXAG) meeting; Nov 14, 2017 - Nov 16, 2017; Laurel, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-13
    Description: Geochemical observations of the eucrite and diogenite meteorites, together with observations made by NASA's Dawn spacecraft while orbiting asteroid 4 Vesta, suggest that Vesta resembles H chondrites in bulk chemical composition, possible with about 25 percent of a CM-chondrite like composition added in. For this model, the core is 15 percent by mass (or 8 percent by volume) of the asteroid, with a composition of 73.7 percent by weight Fe, 16.0 percent by weight S, and 10.3 percent by weight Ni. The abundances of moderately siderophile elements (Ni, Co, Mo, W, and P) in eucrites require that essentially all of the metallic phase in Vesta segregated to form a core prior to eucrite solidification. The combination of the melting phase relationships for the silicate and metal phases, together with the moderately siderophile element concentrations together require that complete melting of the metal phase occurred (temperature is greater than1350 degrees Centigrade), along with substantial (greater than 40 percent) melting of the silicate material. Thus, core formation on Vesta occurs as iron rain sinking through a silicate magma ocean.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-38627 , Lunar and Planetary Science Conference; Mar 20, 2017 - Mar 24, 2017; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The Gravity Recovery and Interior Laboratory (GRAIL) [1], NASA s eleventh Discovery mission, successfully executed its Primary Mission (PM) in lunar orbit between March 1, 2012 and May 29, 2012. GRAIL s Extended Mission (XM) initiated on August 30, 2012 and was successfully completed on December 14, 2012. The XM provided an additional three months of gravity mapping at half the altitude (23 km) of the PM (55 km), and is providing higherresolution gravity models that are being used to map the upper crust of the Moon in unprecedented detail.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN7321 , 44th Lunar and Planetary Science Conference; Mar 18, 2013 - Mar 22, 2013; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...