ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (3)
  • Induced pinocytosis  (2)
  • Life Sciences (General)  (2)
  • VAE 120  (2)
Collection
Publisher
Language
  • 1
    Publication Date: 2021-03-29
    Description: In order to describe texture and microstructure of a polycrystalline material completely, crystal orientation g={?1F?2} must be known in all points x={x1?x2?x3} of the material. This can be achieved by locationresolved diffraction of high-energy, i.e. short-wave, X-rays from synchrotron sources. Highest resolution in the orientation- as well as the location-coordinates can be achieved by three variants of a detector sweeping technique in which an area detector is continuously moved during exposure. This technique results in two-dimensionally continuous images which are sections and projections of the six-dimensional orientation location space. Further evaluation of these images depends on whether individual grains are resolved in them or not. Because of the high penetration depth of high-energy synchrotron radiation in matter, this technique is also, and particularly, suitable for the investigation of the interior of big samples.
    Description: research
    Keywords: 548 ; VAE 120 ; VKA 200 ; VGA 410 ; Methodik {Strukturgeologie} ; Gefügekunde der Gesteine ; Röntgenanalyse {Mineralogie: Kristallographie}
    Language: English
    Type: article , publishedVersion
    Format: 18 S.
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-29
    Description: In order to describe texture and microstructure of a polycrystalline material completely, crystal orientation g={?1F?2} must be known in all points x={x1?x2?x3} of the material. This can be achieved by locationresolved diffraction of high-energy, i.e. short-wave, X-rays from synchrotron sources. Highest resolution in the orientation- as well as the location-coordinates can be achieved by three variants of a detector sweeping technique in which an area detector is continuously moved during exposure. This technique results in two-dimensionally continuous images which are sections and projections of the six-dimensional orientation location space. Further evaluation of these images depends on whether individual grains are resolved in them or not. Because of the high penetration depth of high-energy synchrotron radiation in matter, this technique is also, and particularly, suitable for the investigation of the interior of big samples.
    Keywords: 551 ; VAE 120 ; VKA 200 ; VGA 410 ; 38.03
    Language: English
    Type: article , publishedVersion
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 100 (1979), S. 33-43 
    ISSN: 1615-6102
    Keywords: Amoeba proteus ; Ca++-binding sites ; Cytochemical demonstration ; Induced pinocytosis ; Plasma membrane
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Different methods were used to demonstrate the existence of Ca++-binding sites (Ca++-bs) at the plasma membrane ofAmoeba proteus. In pinocytoting animals the number (indicated by the average distanced in nm) and size (average longitudinal axiss in nm) of Ca++-bs at the cytoplasmic surface of the cell membrane were significantly increased (d=162±15;n=41 ands=93±5;n=47) in comparison to controls (d=208 ±21;n=37 ands=59±8;n=45). The ratio of P: Ca obtained by X-ray microanalysis was in the range of 1.5. The differences observed in the two experimental groups of amoebae are explained by conformational changes in the molecular structure and an increased Ca++-permeability of the plasma membrane during induced pinocytosis. Microplasmodia of the acellular slime moldPhysarum polycephalum investigated for comparison were found to have no Ca++-bs at the interior cell surface.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 197 (1979), S. 263-279 
    ISSN: 1432-0878
    Keywords: Induced pinocytosis ; Dynamics ; Motive force generation ; Light and electron microscopy ; Amoeba proteus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The mechanism of induced pinocytosis was investigated in Amoeba proteus by light and electron microscopy. The application of nine different inducing substances revealed that pinocytotic channel formation, elongation, vesiculation, shortening and disappearance are the result of the successive or simultaneous action of both traction and pressure forces, which are produced by the contractile activity of a plasma membrane-associated layer of filaments ranging from a few hundred nm to several μ in thickness. The initial phase of channel formation is caused by traction forces according to the membrane flow concept, whereas channel elongation and vesiculation mainly result from pressure forces in conjunction with the extrusion of small hyaline pseudopodia. Shortening and disappearance of the pinocytotic channels are brought about by local contractions of the cortical filament layer in the basal region of the hyaline pseudopodia. Experiments using latex beads as marker particles together with inducing substances show that a rapid membrane turnover during pinocytosis can be excluded, and that the plasma membrane slides as an entire structure over the underlying cytoplasm.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: A major argument in the claim that life had been discovered during the Viking mission to Mars is that the results obtained in the Labeled Release (LR) experiment are analogous to those observed with terrestrial microorganisms. This assertion is critically examined and found to be implausible.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Origins of life and evolution of the biosphere : the journal of the International Society for the Study of the Origin of Life (ISSN 0169-6149); Volume 29; 6; 625-31
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: Mussels collected from hydrocarbon seeps in the Gulf of Mexico grow with methane as sole carbon and energy source due to a symbiotic association with methane-oxidizing bacteria. Transmission electron micrographs of mussel gills show cells with stacked intracytoplasmic membranes similar to type I methanotrophic bacteria. Methanotrophs are known to synthesize several types of cyclic triterpenes, hopanoids and methyl sterols, as well as unique monounsaturated fatty acid, double bond positional isomers that serve as biomarkers for this group. Lipid analysis of dissected mussels demonstrated the presence of these biomarkers predominantly in the gill tissue with much smaller amounts in mantle and remaining body tissues. Gill tissue contained 1150 micrograms/g dry wt. of hopanepolyol derivatives and diplopterol while the mantle tissue contained only 17 micrograms/g. The C16 monounsaturated fatty acids (16:1) characteristic of type I methanotrophic membranes dominated the gill tissue making up 53% of the total while only 5% 16:1 was present in the mantle tissue. The methyl sterol distribution was more dispersed. The predominant sterol in all tissues was cholesterol with lesser amounts of other desmethyl and 4-methyl sterols. The gill and mantle tissues contained 3461 micrograms (17% methyl) and 2750 micrograms (5% methyl) sterol per gm dry wt., respectively. Methyl sterol accounted for 44% of the sterol esters isolated from the gill, suggesting active demethylation of the methanotrophic sterols in this tissue. The use of lipid biomarkers could provide an effective means for identifying host-symbiont relationships.
    Keywords: Life Sciences (General)
    Type: American Society for Microbiology; May 23, 1994 - May 27, 1994; Las Vegas, NV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Description: The activities of about 30 enzymes concerned with carbohydrate and lipid metabolism and the levels of glycogen and of individual fatty acids were measured in livers of rats ex- posed to prolonged space flight (18.5 days) aboard COSMOS 986 Biosatellite. When flight stationary, (FS) and flight centrifuged (FC) rats were compared at recovery (R(sub 0)), decrceases in the activities of glycogen phosphorylase, alpha glycerphosphate, acyl transferase, diglyceride acyl transferase, acconitase and Epsilon-phosphogluconate dehydrogenase were noted in the weightless group (FS). The significance of these findings was strengthened since all activities, showing alterations at R(sub 0), returned to normal 25 days post-flight. Differences were also seen in levels of two liver constituents. When glycogen and total fatty acids of the two groups of flight animals were determined, differences that could be attributed to reduced gravity were observed, the FS group at R(sub 0) contained, on the average, more than twice the amount of glycogen than did controls ad a remarkable shift in the ratio of palmitate to palmitoleate were noted. These metabolic alterations appear to be unique to the weightless condition. Our data justify the conclusion that centrifugation during space flight is equivalent to terrestrial gravity.
    Keywords: Life Sciences (General)
    Type: Physiologist; 21; 4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The MOx instrument was developed to characterize the reactive nature of the martian soil. The objectives of MOx were: (1) to measure the rate of degradation of organics in the martian environment; (2) to determine if the reactions seen by the Viking biology experiments were caused by a soil oxidant and measure the reactivity of the soil and atmosphere: (3) to monitor the degradation, when exposed to the martian environment, of materials of potential use in future missions; and, finally, (4) to develop technologies and approaches that can be part of future soil analysis instrumentation. The basic approach taken in the MOx instrument was to place a variety of materials composed as thin films in contact with the soil and monitor the physical and chemical changes that result. The optical reflectance of the thin films was the primary sensing-mode. Thin films of organic materials, metals, and semiconductors were prepared. Laboratory simulations demonstrated the response of thin films to active oxidants.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Planetary and space science (ISSN 0032-0633); 46; 7-Jun; 769-77
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-14
    Description: The search for evidence of life on Mars is a highly interdisciplinary enterprise which extends beyond the traditional life sciences. Mars conceivably had a pervasive ancient biosphere which may have persisted even to the present, but only in subsurface environments. Understanding the history of Mars' global environment, including its inventory of volatile elements, is a crucial part of the search strategy. Those deposits (minerals, sediments, etc.) which could have and retained a record of earlier biological activity must be identified and examined. While the importance of. seeking another biosphere has not diminished during the years since the Viking mission, the strategy for Mars exploration certainly has been modified by later discoveries. The Viking mission itself demonstrated that the present day surface environment of Mars is hostile to life as we know it. Thus, to search effectively for life on Mars, be it extant or extinct, we now must greatly improve our understanding of Mars the planet. Such an understanding will help us broaden our search beyond the Viking lander sites, both back in time to earlier epochs and elsewhere to other sites and beneath the surface. Exobiology involves much more than simply a search for extant life beyond Earth. It addresses the prospect of long-extinct biospheres and also the chemistry, organic and otherwise, which either led to life or which occurred on rocky planets that remained lifeless. Even a Mars without a biosphere would reveal much about life. How better to understand the origin and impact of a biosphere than to compare Earth with another similar but lifeless planet? Still, several relatively recent discoveries offer encouragement that a Martian biosphere indeed might have existed. The ancient Martian surface was extensively sculptured by volcanism and the activity of liquid water. Such observations invoke impressions of an ancient martian atmosphere and environment that resembled ancient Earth more than present-day Mars. Since Viking, we have learned that our own biosphere began prior to 3.5 billion years ago, during an early period when our solar system apparently was sustaining clement conditions on at least two of its planets. Also, we have found that microorganisms can survive, even flourish, in environments more extreme in temperature and water availability than had been previously recognized. The common ancestor of life on Earth probably was adapted to elevated temperatures, raising the possibility that hydrothermal systems played a central role in sustaining our early biosphere. If a biosphere ever arose on Mars, at least some of its constituents probably dwelled in the subsurface. Even today, conditions on Mars and Earth become more similar with increasing depth beneath their surfaces. For example, under the martian permafrost, the geothermal gradient very likely maintains liquid water in environments which resemble aquifers on Earth. Indigenous bacteria have recently been recovered from deep aquifers on Earth. Liquid groundwater very likely persisted throughout Mars' history. Thus, martian biota, if they ever existed, indeed might have survived in subsurface environments.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science Conference; Mar 13, 1995 - Mar 17, 1995; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...