ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOPHYSICS  (4,821)
  • Lunar and Planetary Science and Exploration  (2,567)
Collection
Keywords
Years
  • 1
    Publication Date: 2019-08-14
    Description: Establishing the abundance and physical properties of regolith and boulders on asteroids is crucial for understanding the formation and degradation mechanisms at work on their surfaces. Using images and thermal data from NASA's Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft, we show that asteroid (101955) Bennu's surface is globally rough, dense with boulders, and low in albedo. The number of boulders is surprising given Bennu's moderate thermal inertia, suggesting that simple models linking thermal inertia to particle size do not adequately capture the complexity relating these properties. At the same time, we find evidence for a wide range of particle sizes with distinct albedo characteristics. Our findings imply that ages of Bennu's surface particles span from the disruption of the asteroid's parent body (boulders) to recent in situ production (micrometre-scale particles).
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN67770 , Nature Astronomy (e-ISSN 2397-3366); 3; 341–351
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-01-04
    Description: Active asteroids are those that show evidence of ongoing mass loss. We report repeated instances of particle ejection from the surface of (101955) Bennu, demonstrating that it is an active asteroid. The ejection events were imaged by the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and SecurityRegolith Explorer) spacecraft. For the three largest observed events, we estimated the ejected particle velocities and sizes, event times, source regions, and energies. We also determined the trajectories and photometric properties of several gravitationally bound particles that orbited temporarily in the Bennu environment. We consider multiple hypotheses for the mechanisms that lead to particle ejection for the largest events, including rotational disruption, electrostatic lofting, ice sublimation, phyllosilicate dehydration, meteoroid impacts, thermal stress fracturing, and secondary impacts.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN76455 , Science (ISSN 0036-8075) (e-ISSN 1095-9203); 366; 6470; eaay3544
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-11-22
    Description: The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MER) Spirit and Opportunity. The fraction of sand 〈150 micron in size contains approx. 55% crystalline material consistent with a basaltic heritage, and approx. 45% X-ray amorphous material. The amorphous component of Rocknest is Fe-rich and Si-poor, and is the host of the volatiles (H2O, O2, SO2, CO2, and Cl) detected by the Surface Analysis at Mars (SAM) instrument and of the fine-grained nanophase oxide (npOx) component first described from basaltic soils analyzed by MER. The similarity between soils and aeolian materials analyzed at Gusev crater, Meridiani Planum and Gale crater implies locally sourced, globally similar basaltic materials, or globally and regionally sourced basaltic components deposited locally at all three locations.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN11260
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The Mars Science Laboratory rover Curiosity has encountered a variety of sedimentary rocks in Gale crater with different grain sizes, diagenetic features, sedimentary structures, and varying degrees of resistance to erosion. Curiosity has drilled three rocks to date and has analyzed the mineralogy, chemical composition, and textures of the samples with the science payload. The drilled rocks are the Sheepbed mudstone at Yellowknife Bay on the plains of Gale crater (John Klein and Cumberland targets), the Dillinger sandstone at the Kimberley on the plains of Gale crater (Windjana target), and a sedimentary unit in the Pahrump Hills in the lowermost rocks at the base of Mt. Sharp (Confidence Hills target). CheMin is the Xray diffractometer on Curiosity, and its data are used to identify and determine the abundance of mineral phases. Secondary phases can tell us about aqueous alteration processes and, thus, can help to elucidate past aqueous environments. Here, we present the secondary mineralogy of the rocks drilled to date as seen by CheMin and discuss past aqueous environments in Gale crater, the potential cementing agents in each rock, and how amorphous materials may play a role in cementing the sediments.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-32841 , Lunar and Planetary Science Conference; Mar 16, 2015 - Mar 20, 2015; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration s Human Spaceflight Architecture Team (HAT) has been developing a preliminary Destination Mission Concept (DMC) to assess how a human orbital mission to one or both of the Martian moons, Phobos and Deimos, might be conducted as a follow-on to a human mission to a near-Earth asteroid (NEA) and as a possible preliminary step prior to a human landing on Mars. The HAT Mars-Phobos-Deimos (MPD) mission also permits the teleoperation of robotic systems by the crew while in the Mars system. The DMC development activity provides an initial effort to identify the science and exploration objectives and investigate the capabilities and operations concepts required for a human orbital mission to the Mars system. In addition, the MPD Team identified potential synergistic opportunities via prior exploration of other destinations currently under consideration.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-26565 , Concepts and Approaches for Mars Exploration; Jun 12, 2012 - Jun 14, 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The Curiosity rover investigated the mineralogy of the Sheepbed mudstone member of the Yellowknife Bay formation in Gale crater. Data from the Chemistry and Mineralogy (CheMin) X-ray diffractometer (XRD) helped identify phyllosilicates in the two drilled samples, John Klein and Cumberland. These patterns showed peaks at low angles, consistent with (001) peaks in 2:1 swelling phyllosilicates [1]. Evolved gas analyses (EGA) by the Sample Analysis at Mars (SAM) instrument of these samples confirmed the presence of phyllosilicates through the release of H2O at high temperatures, consistent with dehydroxylation of octahedral OH in phyllosilicates [2]. CheMin data for the phyllosilicates at John Klein and Cumberland show that they are structurally similar in that their (02l) peaks are near 22.5 deg 2theta, suggesting both samples contain trioctahedral 2:1 phyllosilicates [1]. However, the positions of the (001) peaks differ: the phyllosilicate at John Klein has its (001) peak at 10 Angstroms, whereas the phyllosilicate at Cumberland has an (001) peak at 14 Angstroms. Such differences in (001) dspacings can be ascribed to the type of cation in the interlayer site [3]. For example, large monovalent cations (e.g., K(+)) have low hydration energies and readily lose their H2O of hydration, whereas small divalent cations (e.g., Mg(2+)) have high energies of hydration and retain H2O in the phyllosilicate interlayers [3,4]. The goal of this study is to determine whether differences in the interlayer cation composition can explain the CheMin data from John Klein and Cumberland and to use this knowledge to better understand phyllosilicate formation mechanisms.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-30371 , Lunar and Planetary Science Conference; Mar 17, 2014 - Mar 21, 2014; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-19
    Description: An investigation of zircon data from the Mulcahy Lake gabbro, a 63 sq km layered mafic intrusion in the Wabigoon subprovince of Ontario, which show that the gabbro crystallized at 2733.2 +1.0, -0.9 Ma, is considered. It is shown that the gabbro intrudes tholeiites of the Crow Lake-Savant Lake greenstone belt. Whole rock samples and mineral separates from the Mulcahy Lake intrusion are dated by Rb-Sr, Sm-Nd, and Ar-30-Ar-40 techniques. Disturbances in the system are revealed by the Rb-Sr data and an initial Sr ratio of 0.7007 for an age of 2733 Ma is indicated by samples with low Rb/Sr ratios. The age determined for the Sm-Nd data is 2744 + or 55 Ma with an epsilon Nd value of +2.6 + or - 1.2 which indicates a source region depleted in a light rare earth element. Primary hornblende is analyzed for Ar-40/Ar-39 and an age of 2703 + or - 20 is obtained. Some implications for the development of greenstone-granite belts are discussed.
    Keywords: GEOPHYSICS
    Type: Earth and Planetary Science Letters (ISSN 0012-821X); 73; 2-3,
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Recent discoveries by the Mars Exploration Rovers, Mars Express, Mars Odyssey, and Mars Reconnaissance Orbiter spacecraft include multiple, tantalizing astrobiological targets representing both past and present environments on Mars. The most desirable path to Mars Sample Return (MSR) would be to collect and return samples from that site which provides the clearest examples of the variety of rock types considered a high priority for sample return (pristine igneous, sedimentary, and hydrothermal). Here we propose an MSR architecture in which the next steps (potentially launched in 2018) would entail a series of smaller missions, including caching, to multiple landing sites to verify the presence of high priority sample return targets through in situ analyses. This alternative architecture to one flagship-class sample caching mission to a single site would preserve a direct path to MSR as stipulated by the Planetary Decadal Survey, while permitting investigation of diverse deposit types and providing comparison of the site of returned samples to other aqueous environments on early Mars
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-26522 , Mars Exploration Meeting; Jun 12, 2012 - Jun 14, 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: The Pahrump Hills region of Gale crater is a approximately 12 millimeter thick section of sedimentary rocks in the Murray formation, interpreted as the basal geological unit of Mount Sharp. The Mars Science Laboratory, Curiosity, arrived at the Pahrump Hills in September, 2014, and performed a detailed six-month investigation of the sedimentary structures, geochemistry, and mineralogy of the area. During the campaign, Curiosity drilled and delivered three rock samples to its internal instruments, including the CheMin XRD/XRF. The three targets, Confidence Hills, Mojave 2, and Telegraph Peak, contain variable amounts of plagioclase, pyroxene, iron oxides, jarosite, phyllosilicates, and X-ray amorphous material. Hematite was predicted at the base of Mount Sharp from orbital visible/near-IR spectroscopy, and CheMin confirmed this detection. The presence of jarosite throughout Pahrump Hills suggests the sediments experienced acid-sulfate alteration, either in-situ or within the source region of the sediments. This acidic leaching environment is in stark contrast to the environment preserved within the Sheepbed mudstone on the plains of Gale crater. The minerals within Sheepbed, including Fe-saponite, indicate these sediments were deposited in a shallow lake with circumneutral pH that may have been habitable.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-33260 , 2015 Goldschmidt Conference; Aug 16, 2015 - Aug 21, 2015; Prague; Czechoslovakia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Remote sensing observations meet some limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the superiority of in situ probe measurements is illustratedby the exploration of Jupiter, where key measurements such as the determination of the noble gases abundances and the precise measurement of the helium mixing ratio have only been made available through in situ measurements by the Galileo probe. This paper describes the main scienti-c goals to be addressed by the future in situ exploration of Saturn placing the Galileo probe exploration of Jupiter in a broader context and before the future probe exploration of the more remote ice giants. In situ exploration of Saturn's atmosphere addresses two broad themes that are discussedthroughout this paper : rst, the formation history of our solar system and second, the processes at play in planetary atmospheres. In this context, we detail the reasons why measurements of Saturn's bulk elemental and isotopiccomposition would place important constraints on the volatile reservoirs in the protosolar nebula. We also show that the in situ measurement of CO (or any other disequilibrium species that is depleted by reaction with water) in Saturn's upper troposphere may help constraining its bulk OH ratio. We compare predictions of Jupiter and Saturn's bulk compositions from different formation scenarios, and highlight the key measurements required to distinguish competing theories to shed light on giant planet formation as a common process in planetary systems with potential applications to mostextrasolar systems. In situ measurements of Saturn's stratospheric and tropospheric dynamics, chemistry and cloud-forming processes will provide access to phenomena unreachable to remote sensing studies. Dierent mission architectures are envisaged, which would benet from strong international collaborations, all based on an entry probe that would descend through Saturn's stratosphere and troposphere under parachute down to a minimum of 10 bars of atmospheric pressure. We rally discuss the science payload required on a Saturn probe to match the measurement requirements.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN19065 , Planetary and Space Sciences Journal; 104; A; 29-47
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...