ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Lunar and Planetary Science and Exploration  (8)
  • Astrophysics  (5)
  • 1
    Publikationsdatum: 2017-10-02
    Beschreibung: Prior to Cassini s arrival at Saturn, most of what was known about the composition of the plasma in Saturn s environment was derived from limited measurements by Pioneer 11 and Voyager 1 and 2 in 1979-1981[1-3]. The measurements reported here were made by the Cassini Plasma Spectrometer (CAPS) [4] during the first two Cassini orbits, including the closest approach to Saturn and the rings during the tour, and a close flyby of Titan. The CAPS instrument resolves ion energy/charge from 1 V to 50 kV and ion mass/charge from 1 to approx.100 amu/e, and it measures electron energy from 1 eV to 28 keV. Initial composition measurements of Saturn s magnetosphere show that protons dominate outside approx.8 R(sub s), while inside this radius the plasma is dominated by a mix of water-derived ions and N(+). Over the A and B rings a plasma layer is observed composed of O2(+) and O(+) . The close passage near Titan shows a rich network of both positive and negative molecular ions. We report preliminary analysis of these and other composition findings.
    Schlagwort(e): Lunar and Planetary Science and Exploration
    Materialart: Lunar and Planetary Science XXXVI, Part 17; LPI-Contrib-1234-Pt-17
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-07-17
    Beschreibung: We propose a combined Titan orbiter and Titan Aerorover mission with an emphasis on both in situ and remote sensing measurements of Titan's surface, atmosphere, ionosphere, and magnetospheric interaction. The biological aspect of the Titan environment will be emphasized by the mission (i.e., search for organic materials which may include simple organics to 'amono' analogues of amino acids and possibly more complex, lightening detection and infrared, ultraviolet, and charged particle interactions with Titan's surface and atmosphere). An international mission is assumed to control costs. NASA will provide the orbiter, launch vehicle, DSN coverage and operations, while international partners will provide the Aerorover and up to 30% of the cost for the scientific instruments through collaborative efforts. To further reduce costs we propose a single PI for orbiter science instruments and a single PI for Aerorover science instruments. This approach will provide single command/data and power interface between spacecraft and orbiter instruments that will have redundant central DPU and power converter for their instruments. A similar approach could be used for the Aerorover. The mission profile will be constructed to minimize conflicts between Aerorover science, orbiter radar science, orbiter radio science, orbiter imaging science, and orbiter fields and particles (FP) science. Additional information is contained in the original extended abstract.
    Schlagwort(e): Lunar and Planetary Science and Exploration
    Materialart: Forum on Innovative Approaches to Outer Planetary Exploration 2001-2020; 77; LPI-Contrib-1084
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-07-13
    Beschreibung: Saturns moons, Titan and Enceladus, are two of the Solar Systems most enigmatic bodies and are prime targets for future space exploration. Titan provides an analogue for many processes relevant to the Earth, more generally to outer Solar System bodies, and a growing host of newly discovered icy exoplanets. Processes represented include atmospheric dynamics, complex organic chemistry, meteorological cycles (with methane as a working fluid), astrobiology, surface liquids and lakes, geology, fluvial and aeolian erosion, and interactions with an external plasma environment. In addition, exploring Enceladus over multiple targeted flybys will give us a unique opportunity to further study the most active icy moon in our Solar System as revealed by Cassini and to analyse in situ its active plume with highly capable instrumentation addressing its complex chemistry and dynamics. Enceladus plume likely represents the most accessible samples from an extra-terrestrial liquid water environment in the Solar system, which has far reaching implications for many areas of planetary and biological science. Titan with its massive atmosphere and Enceladus with its active plume are prime planetary objects in the Outer Solar System to perform in situ investigations. In the present paper, we describe the science goals and key measurements to be performed by a future exploration mission involving a Saturn-Titan orbiter and a Titan balloon, which was proposed to ESA in response to the call for definition of the science themes of the next Large-class mission in 2013. The mission scenario is built around three complementary science goals: (A) Titan as an Earth-like system; (B) Enceladus as an active cryovolcanic moon; and (C) Chemistry of Titan and Enceladus - clues for the origin of life. The proposed measurements would provide a step change in our understanding of planetary processes and evolution, with many orders of magnitude improvement in temporal, spatial, and chemical resolution over that which is possible with Cassini-Huygens. This mission concept builds upon the successes of Cassini-Huygens and takes advantage of previous mission heritage in both remote sensing and in situ measurement technologies.
    Schlagwort(e): Lunar and Planetary Science and Exploration
    Materialart: GSFC-E-DAA-TN19941 , Planetary and Space Science (ISSN 0032-0633); 104; Part A; 59-77
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-07-19
    Beschreibung: With the recent discovery of heavy ions, positive and negative, by the Cassini Plasma Spectrometer (CAPS) instrument in Titan's ionosphere, it reveals new possibilities for aerosol formation at Titan and the introduction of free oxygen to the aerosol chemistry from Saturn's magnetosphere with Enceladus as the primary oxygen source. One can estimate whether the heavy ions in the ionosphere are of sufficient number to account for all the aerosols, under what conditions are favorable for heavy ion formation and how they are introduced as seed particles deeper in Titan's atmosphere where the aerosols form and eventually find themselves on Titan's surface where unknown chemical processes can take place. Finally, what are the possibilities with regard to their chemistry on the surface with some free oxygen present in their seed particles?
    Schlagwort(e): Astrophysics
    Materialart: International Space Science Institute Conference; Aug 27, 2007 - Aug 31, 2007; Bern; Switzerland
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2019-07-19
    Beschreibung: As described in Bertucci et al. [2007] Saturn's magnetic field is stretched out into a magnetodisk configuration where the field is confined near the equatorial plane with Titan below the current sheet. As discussed in Maurice et al. [1996] for Jupiter's outer magnetosphere where magnetodisk configuration applies the heavy ions are confined within 2 deg of the current sheet and at higher latitudes protons dominate. We show compositional evidence from the Cassini Plasma Spectrometer (CAPS) Ion Mass Spectrometer (IMS) that protons dominate the ion composition for the upstream flow, while in pickup region H2+ and protons dominate. If true, then we expect a far different interaction between Saturn's magnetosphere and Titan's upper atmosphere and exosphere, where heavy ions are essentially absent.
    Schlagwort(e): Lunar and Planetary Science and Exploration
    Materialart: Joint meeting of the American Astronautical Society/Science Programs Division, American Geophysical Union; May 26, 2008 - May 30, 2008; Fort Lauderdale, Fl; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2019-07-19
    Beschreibung: Most of Titan's atmospheric organic and nitrogen chemistry, aerosol formation, and atmospheric loss are driven from external energy sources such as Solar UV, Saturn's magnetosphere, solar wind and galactic cosmic rays. The Solar UV tends to dominate the energy input at lower altitudes of approximately 1100 km but which can extend down to approximately 400 km, while the plasma interaction from Saturn's magnetosphere, Saturn's magnetosheath or solar wind are more important at higher altitudes of approximately 1400 km, but the heavy ion plasma [O(+)] of approximately 2 keV and energetic ions [H(+)] of approximately 30 keV or higher from Saturn's magnetosphere can penetrate below 950km. Cosmic rays with energies of greater than 1 GeV can penetrate much deeper into Titan's atmosphere with most of its energy deposited at approximately 100 km altitude. The haze layer tends to dominate between 100 km and 300 km. The induced magnetic field from Titan's interaction with the external plasma can be very complex and will tend to channel the flow of energy into Titan's upper atmosphere. Cassini observations combined with advanced hybrid simulations of the plasma interaction with Titan's upper atmosphere show significant changes in the character of the interaction with Saturn local time at Titan's orbit where the magnetosphere displays large and systematic changes with local time. The external solar wind can also drive sub-storms within the magnetosphere which can then modify the magnetospheric interaction with Titan. Another important parameter is solar zenith angle (SZA) with respect to the co-rotation direction of the magnetospheric flow. Titan's interaction can contribute to atmospheric loss via pickup ion loss, scavenging of Titan's ionospheric plasma, loss of ionospheric plasma down its induced magnetotail via an ionospheric wind, and non-thermal loss of the atmosphere via heating and sputtering induced by the bombardment of magnetospheric keV ions and electrons. This energy input evidently drives the large positive and negative ions observed below approximately 1100 km altitude with ion masses exceeding 10,000 daltons. We refer to these ions as seed particles for the aerosols observed below 300 km altitude. These seed particles can be formed, for example, from the polymerization of acetylene (C2H2) and benzene (C6H6) molecules in Titan's upper atmosphere to form polycyclic aromatic hydrocarbons (PAH) and/or fullerenes (C60). In the case of fullerenes, which are hollow spherical carbon shells, magnetospheric keV [O(+)] ions can become trapped inside the fullerenes and eventually find themselves inside the aerosols as free oxygen. The aerosols are then expected to fall to Titan's surface as polymerized hydrocarbons with trapped free oxygen where unknown surface chemistry can take place.
    Schlagwort(e): Lunar and Planetary Science and Exploration
    Materialart: Meeting held in Corpus Christi, TX on July 7-11, 2008
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2019-07-19
    Beschreibung: Using Cassini Plasma Spectrometer (CAPS) Ion Mass Spectrometer (IMS) ion composition data, we will investigate the compositional changes at the transition region between Saturn's magnetospheric flow and Titan's upper ionosphere. It is this region where scavenging of Titan's upper ionosphere can occur, where it is then dragged away by the magnetospheric flow as cold plasma for Saturn's magnetosphere. This cold plasma may form plumes as originally proposed by (1) during the Voyager 1 epoch. This source of cold plasma may have a unique compositional signature such as methane group ions. Water group ions that are observed in Saturn's outer magnetosphere (2,3) are relatively hot and probably come from the inner magnetosphere where they are born from fast neutrals escaping Enceladus (4) and picked up in the outer magnetosphere as hot plasma (5). This scenario will be complicated by pickup methane ions within Titan's mass loading region, as originally predicted by (6) based on Voyager 1 data and observationally confirmed by (3,7) using CAPS IMS data. But, CH4(+) ions or their fragments can only be produced as pickup ions from Titan's exosphere which can extend beyond the transition region of concern here, while CH5(+) ions can be scavenged from Titan's ionosphere. We will investigate these possibilities.
    Schlagwort(e): Lunar and Planetary Science and Exploration
    Materialart: 38th Annual Division of Planetary Sciences Meeting; Oct 09, 2006 - Oct 13, 2006; Pasadena, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2019-07-12
    Beschreibung: Planetary plasma and magnetic field environments can be studied in two complementary ways - by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth's magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques. which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth's magnetosphere. In this article we describe how an appropriately designed and located. X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock. with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth's magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose 'AXIOM: Advanced X-ray Imaging Of the Magnetosphere', a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth - Moon Ll point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterize the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and direction of the solar wind magnetic field. We also show simulations that demonstrate how the proposed X-ray telescope design is capable of imaging the predicted emission from the dayside magnetosphere with the sensitivity and cadence required to achieve the science goals of the mission.
    Schlagwort(e): Astrophysics
    Materialart: GSFC.7305.2012
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2019-07-12
    Beschreibung: We present the first observation of magnetic fluctuations consistent with Short Large-Amplitude Magnetic Structures (SLAMS) in the foreshock of the planet Venus. Three monolithic magnetic field spikes were observed by the Venus Express on the 11th of April 2009. The structures were approx.1.5-〉11s in duration, had magnetic compression ratios between approx.3-〉6, and exhibited elliptical polarization. These characteristics are consistent with the SLAMS observed at Earth, Jupiter, and Comet Giacobini-Zinner, and thus we hypothesize that it is possible SLAMS may be found at any celestial body with a foreshock.
    Schlagwort(e): Astrophysics
    Materialart: GSFC.JA.7467.2012
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2019-07-13
    Beschreibung: We present a bulk ion flow map from the nightside, equatorial region of Saturn's magnetosphere derived from the Cassini CAPS ion mass spectrometer data. The map clearly demonstrates the dominance of corotation flow over radial flow and suggests that the flux tubes sampled are still closed and attached to the planet up to distances of 50RS. The plasma characteristics in the near-midnight region are described and indicate a transition between the region of the magnetosphere containing plasma on closed drift paths and that containing flux tubes which may not complete a full rotation around the planet. Data from the electron spectrometer reveal two plasma states of high and low density. These are attributed either to the sampling of mass-loaded and depleted flux tubes, respectively, or to the latitudinal structure of the plasma sheet. Depleted, returning flux tubes are not, in general, directly observed in the ions, although the electron observations suggest that such a process must take place in order to produce the low-density population. Flux-tube content is conserved below a limit defined by the mass-loading and magnetic field strength and indicates that the flux tubes sampled may survive their passage through the tail. The conditions for mass-release are evaluated using measured densities, angular velocities and magnetic field strength. The results suggest that for the relatively dense ion populations detectable by the ion mass spectrometer (IMS), the condition for flux-tube breakage has not yet been exceeded. However, the low-density regimes observed in the electron data suggest that loaded flux tubes at greater distances do exceed the threshold for mass-loss and subsequently return to the inner magnetosphere significantly depleted of plasma.
    Schlagwort(e): Astrophysics
    Materialart: GSFC-E-DAA-TN22851 , Planetary and Space Science; 57; 14-15; 1714-1722
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...