ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • sulfur  (3)
  • Lumbricus terrestris  (2)
  • Springer  (5)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 23 (1996), S. 57-63 
    ISSN: 1432-0789
    Keywords: Earthworms ; N mineralization ; Agroecosystems ; Soil structure ; Microbial biomass ; Lumbricus terrestris ; Aporrectodea tuberculata ; Soil cores
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The influence of earthworms (Lumbricus terrestris and Aporrectodea tuberculata) on the rate of net N mineralization was studied, both in soil columns with intact soil structure (partly influenced by past earthworm activity) and in columns with sieved soil. Soil columns were collected from a well drained silt loam soil, and before the experiment all earthworms present were removed. Next, either new earthworms (at the rate of five earthworms per 1200 cm3, which was only slightly higher than field numbers and biomass) were added or they were left out. At five points in time, the columns were analyzed for NH 4 + , NO 3 − , and microbial biomass in separate samples from the upper and lower layers of the columns. N mineralization was estimated from these measurements. The total C and N content and the microbial biomass in the upper 5 cm of the intact soil columns was higher than in the lower layer. In the homogenized columns, the C and N content and the microbial biomass were equally divided over both layers. In all columns, the concentration of NH 4 + was small at the start of the experiment and decreased over time. No earthworm effects on extractable NH 4 + were observed. However, when earthworms were present, the concentration of NO 3 − increased in both intact and homogenized cores. The microbial biomass content did not change significantly with time in any of the treatments. In both intact and homogenized soil, N mineralization increased when earthworms were present. Without earthworms, both type of cores mineralized comparable amounts of N, which indicates that mainly direct and indirect biological effects are responsible for the increase in mineralization in the presence of earthworms. The results of this study indicate that earthworm activity can result in considerable amounts of N being mineralized, up to 90 kg N ha−1 year−1, at the density used in this experiment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 23 (1996), S. 57-63 
    ISSN: 1432-0789
    Keywords: Key words Earthworms ; N mineralization ; Agroecosystems ; Soil structure ; Microbial biomass ; Lumbricus terrestris ; Aporrectodea tuberculata ; Soil cores
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The influence of earthworms (Lumbricus terrestris and Aporrectodea tuberculata) on the rate of net N mineralization was studied, both in soil columns with intact soil structure (partly influenced by past earthworm activity) and in columns with sieved soil. Soil columns were collected from a well drained silt loam soil, and before the experiment all earthworms present were removed. Next, either new earthworms (at the rate of five earthworms per 1200 cm3, which was only slightly higher than field numbers and biomass) were added or they were left out. At five points in time, the columns were analyzed for NH4 +, NO3 –, and microbial biomass in separate samples from the upper and lower layers of the columns. N mineralization was estimated from these measurements. The total C and N content and the microbial biomass in the upper 5 cm of the intact soil columns was higher than in the lower layer. In the homogenized columns, the C and N content and the microbial biomass were equally divided over both layers. In all columns, the concentration of NH4 + was small at the start of the experiment and decreased over time. No earthworm effects on extractable NH4 + were observed. However, when earthworms were present, the concentration of NO3 – increased in both intact and homogenized cores. The microbial biomass content did not change significantly with time in any of the treatments. In both intact and homogenized soil, N mineralization increased when earthworms were present. Without earthworms, both type of cores mineralized comparable amounts of N, which indicates that mainly direct and indirect biological effects are responsible for the increase in mineralization in the presence of earthworms. The results of this study indicate that earthworm activity can result in considerable amounts of N being mineralized, up to 90 kg N ha–1 year–1, at the density used in this experiment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5036
    Keywords: Acer rubrum ; calcium ; cations ; Cornus florida ; decomposition ; litter ; magnesium ; nitrogen ; nutrient release ; phosphorous ; potassium ; Quercus prinus ; sulfur
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Calcium, magnesium and potassium dynamics in decomposing litter of three tree species were measured over a two-year period. The speices studied were flowering dogwood (Cornus florida), red maple (Acer rubrum) and chestnut oak (Quercus prinus). The order of decomposition was:C. florida〉A. rubrum〉Q. prinus. Calcium concentrations increased following any initial leaching losses. However, there were net releases of Ca from all three litter types since mass loss exceeded the increases in concentration. Net release of Ca by the end of two years from all three species combined was 42% of initial inputs in litterfall. Magnesium concentrations increased in the second year, following decreases due to leaching during the first year inC. florida andA. rubrum litter. Net release of Mg by the end of two years was 58% of initial inputs. Potassium concentrations decreased rapidly and continued to decline throughout the study. Net release of K by the end of two years was 91% of initial inputs. These data on cation dynamics, and similar data on N, S and P dynamics from a previous study, were combined with annual litterfall data to estimate the release of selected nutrients from foliar litter of these tree species at the end of one and two years of decomposition. The relative mobility of all six elements examined in relation to mass loss after two years was; K〉Mg〉mass〉Ca〉S〉P〉N.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 155-156 (1993), S. 379-382 
    ISSN: 1573-5036
    Keywords: elemental sulfur ; modelling ; oxidation ; sulfur
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract An elemental S oxidation model has been developed which combines a maximum S release rate with modifiers for temperature and soil moisture conditions. This model has been combined with a pasture growth and CNSP nutrient cycling model to match S oxidation rate to pasture S demand. In two Southern Australian enviroments, 100μm elemental S was superior to 200μm particles whilst in Northern Australia the 200μm particles were superior. These models can be used to match S release to plant demand.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 155-156 (1993), S. 383-386 
    ISSN: 1573-5036
    Keywords: Soil analysis ; soil testing ; sulfur
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A wide range of extractants have been used to extract S from soils but correlations with plant response have generally been poor. Direct evidence that ester sulfates contribute to plant S supply lead to the development of the 0.25 M KCl extract heated at 40°C for 3 hours. Sequential extraction showed that this extractant removed 5.9% of ester sulfates from unfertilised soil. Support of the efficacy of the extract was obtained using specific radioactivity data from plants and soil extract.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...