ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-05-04
    Description: Extracts of the resin of the guggul tree (Commiphora mukul) lower LDL (low-density lipoprotein) cholesterol levels in humans. The plant sterol guggulsterone [4,17(20)-pregnadiene-3,16-dione] is the active agent in this extract. We show that guggulsterone is a highly efficacious antagonist of the farnesoid X receptor (FXR), a nuclear hormone receptor that is activated by bile acids. Guggulsterone treatment decreases hepatic cholesterol in wild-type mice fed a high-cholesterol diet but is not effective in FXR-null mice. Thus, we propose that inhibition of FXR activation is the basis for the cholesterol-lowering activity of guggulsterone. Other natural products with specific biologic effects may modulate the activity of FXR or other relatively promiscuous nuclear hormone receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Urizar, Nancy L -- Liverman, Amy B -- Dodds, D'Nette T -- Silva, Frank Valentin -- Ordentlich, Peter -- Yan, Yingzhuo -- Gonzalez, Frank J -- Heyman, Richard A -- Mangelsdorf, David J -- Moore, David D -- New York, N.Y. -- Science. 2002 May 31;296(5573):1703-6. Epub 2002 May 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11988537" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Caco-2 Cells ; Carrier Proteins/genetics/metabolism ; Cells, Cultured ; Chenodeoxycholic Acid/pharmacology ; Cholesterol/*metabolism ; Cholesterol, Dietary/administration & dosage ; DNA/metabolism ; DNA-Binding Proteins/*antagonists & inhibitors/chemistry/genetics/*metabolism ; Hepatocytes/metabolism ; Histone Acetyltransferases ; Humans ; *Hydroxysteroid Dehydrogenases ; Hypolipidemic Agents/metabolism/*pharmacology ; Ligands ; Liver/metabolism ; *Membrane Glycoproteins ; Mice ; Nuclear Receptor Coactivator 1 ; Pregnenediones/metabolism/*pharmacology ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors/genetics/metabolism ; Receptors, Steroid/antagonists & inhibitors/metabolism ; Transcription Factors/*antagonists & inhibitors/chemistry/genetics/*metabolism ; Transcriptional Activation/drug effects ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-12-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Werb, Z -- Yan, Y -- CA72006/CA/NCI NIH HHS/ -- HD26732/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1998 Nov 13;282(5392):1279-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy, University of California, San Francisco, CA 94143-0452, USA. zena@itsa.ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9867633" target="_blank"〉PubMed〈/a〉
    Keywords: ADAM Proteins ; Animals ; Catalytic Domain ; Cell Adhesion Molecules/metabolism ; Cell Membrane/*metabolism ; Growth Substances/metabolism ; L-Selectin/metabolism ; Ligands ; Membrane Proteins/*metabolism ; Metalloendopeptidases/chemistry/*metabolism ; Mice ; Models, Biological ; Receptor, Epidermal Growth Factor/metabolism ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-07-06
    Description: Mutationally activated kinases define a clinically validated class of targets for cancer drug therapy. However, the efficacy of kinase inhibitors in patients whose tumours harbour such alleles is invariably limited by innate or acquired drug resistance. The identification of resistance mechanisms has revealed a recurrent theme-the engagement of survival signals redundant to those transduced by the targeted kinase. Cancer cells typically express multiple receptor tyrosine kinases (RTKs) that mediate signals that converge on common critical downstream cell-survival effectors-most notably, phosphatidylinositol-3-OH kinase (PI(3)K) and mitogen-activated protein kinase (MAPK). Consequently, an increase in RTK-ligand levels, through autocrine tumour-cell production, paracrine contribution from tumour stroma or systemic production, could confer resistance to inhibitors of an oncogenic kinase with a similar signalling output. Here, using a panel of kinase-'addicted' human cancer cell lines, we found that most cells can be rescued from drug sensitivity by simply exposing them to one or more RTK ligands. Among the findings with clinical implications was the observation that hepatocyte growth factor (HGF) confers resistance to the BRAF inhibitor PLX4032 (vemurafenib) in BRAF-mutant melanoma cells. These observations highlight the extensive redundancy of RTK-transduced signalling in cancer cells and the potentially broad role of widely expressed RTK ligands in innate and acquired resistance to drugs targeting oncogenic kinases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3724525/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3724525/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, Timothy R -- Fridlyand, Jane -- Yan, Yibing -- Penuel, Elicia -- Burton, Luciana -- Chan, Emily -- Peng, Jing -- Lin, Eva -- Wang, Yulei -- Sosman, Jeff -- Ribas, Antoni -- Li, Jiang -- Moffat, John -- Sutherlin, Daniel P -- Koeppen, Hartmut -- Merchant, Mark -- Neve, Richard -- Settleman, Jeff -- K24 CA097588/CA/NCI NIH HHS/ -- England -- Nature. 2012 Jul 26;487(7408):505-9. doi: 10.1038/nature11249.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Oncology, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22763448" target="_blank"〉PubMed〈/a〉
    Keywords: Antineoplastic Agents/*pharmacology ; Breast Neoplasms/*drug therapy/genetics/metabolism/pathology ; Cell Line, Tumor ; Cell Survival/drug effects ; *Drug Resistance, Neoplasm/drug effects ; Female ; Hepatocyte Growth Factor/*metabolism/pharmacology ; Humans ; Indoles/*pharmacology ; Ligands ; Melanoma/*drug therapy/enzymology/genetics/pathology ; Mitogen-Activated Protein Kinases/metabolism ; Phosphatidylinositol 3-Kinases/metabolism ; Protein Kinase Inhibitors/*pharmacology ; Proto-Oncogene Proteins B-raf/*antagonists & inhibitors/genetics ; Quinazolines/pharmacology ; Receptor Protein-Tyrosine Kinases/metabolism ; Receptor, ErbB-2/genetics/metabolism ; Signal Transduction/drug effects ; Sulfonamides/*pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...