ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: The purpose of this study was to investigate the impact of recombinant human growth hormone (rhGH) on patella tendon (PT), medial collateral ligament (MCL), and lateral collateral ligament (LCL) on collagen growth and maturational changes in dwarf GH-deficient rats. Twenty male Lewis mutant dwarf rats, 37 days of age, were randomly assigned to Dwarf + rhGH (n = 10) and Dwarf + vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt twice daily for 14 days. rhGH administration stimulated dense fibrous connective tissue growth, as demonstrated by significant increases in hydroxyproline specific activity and significant decreases in the non-reducible hydroxylysylpyridinoline (HP) collagen cross-link contents. The increase in the accumulation of newly accreted collagen was 114, 67, and 117% for PT, MCL, and LCL, respectively, in 72 h. These findings suggest that a short course rhGH treatment can affect the rate of new collagen production. However, the maturation of the tendon and ligament tissues decreased 18-25% during the rapid accumulation of de novo collagen. We conclude that acute rhGH administration in a dwarf rat can up-regulate new collagen accretion in dense fibrous connective tissues, while causing a reduction in collagen maturation. Copyright 2002 Elsevier Science Ltd.
    Keywords: Life Sciences (General)
    Type: Growth hormone & IGF research : official journal of the Growth Hormone Research Society and the International IGF Research Society (ISSN 1096-6374); Volume 12; 5; 367-73
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The regulation of Ca(2+)-pumps is important for controlling [Ca(2+)] in the cytosol and organelles of all eukaryotes. Here, we report a genetic strategy to identify residues that function in autoinhibition of a novel calmodulin-activated Ca(2+)-pump with an N-terminal regulatory domain (isoform ACA2 from Arabidopsis). Mutant pumps with constitutive activity were identified by complementation of a yeast (K616) deficient in two Ca(2+)-pumps. Fifteen mutations were found that disrupted a segment of the N-terminal autoinhibitor located between Lys(23) and Arg(54). Three mutations (E167K, D219N, and E341K) were found associated with the stalk that connects the ATPase catalytic domain (head) and with the transmembrane domain. Enzyme assays indicated that the stalk mutations resulted in calmodulin-independent activity, with V(max), K(mATP), and K(mCa(2+)) similar to that of a pump in which the N-terminal autoinhibitor had been deleted. A highly conservative substitution at Asp(219) (D219E) still produced a deregulated pump, indicating that the autoinhibitory structure in the stalk is highly sensitive to perturbation. In plasma membrane H(+)-ATPases from yeast and plants, similarly positioned mutations resulted in hyperactive pumps. Together, these results suggest that a structural feature of the stalk is of general importance in regulating diverse P-type ATPases.
    Keywords: Life Sciences (General)
    Type: The Journal of biological chemistry (ISSN 0021-9258); Volume 275; 39; 30301-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-03
    Description: The skin repair studies started to be problematic for the following reasons: (1) It was very difficult to locate the wound and many lesions were not of the same dimensions. A considerable amount of time was devoted to the identification of the wound using polarized light. We understand that this experiment was added on to the overall project. Marking of the wound site and standard dimensions should be recommended for the next flight experiment. (2) The tissue was frozen, therefore thawing and fixation caused problems with some of the immunocytochemical staining for obtaining better special resolution with light microscopy image processing. Despite these problems, we were unable to detect any significant qualitative differences for the following wound markers: (1) Collagen Type 3, (2) Hematotoxylin and Eosin, and (3) Macrophage Factor 13. All protein markers were isolated from rat sources and antibodies prepared and tested for cross reactivity with other molecules at the University of Wisconsin Hybridoma Facility. However, rat skin from the non lesioned site 'normal' showed interesting biochemical results. Skin was prepared for the following measurements: (1) DNA content, (2) Collagen content by hydroxyproline, and (3) uronic acid content and estimation of ground substance. The results indicated there was a non-significant increase (10%) in the DNA concentration of skin from flight animals. However, the data expressed as a ratio DNA/Collagen estimates the cell or nuclear density that supports a given quantity of collagen showed a dramatic increase in the flight group (33%). This means flight conditions may have slowed down collagen secretion and/or increased cell proliferation in adult rat skin. Further biochemical tests are being done to determine the crosslinking of elastin which will enhance the insight to assessing changes in skin turnover.
    Keywords: Life Sciences (General)
    Type: US Experiments Flown on the Soviet Biosatellite Cosmos 2044; 233-238; NASA-TM-108802
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Patients exhibiting changes in connective tissue and bone metabolism also show changes in urinary by-products of tissue metabolism. Furthermore, the changes in urinary connective tissue and bone metabolites precede alterations at the tissue macromolecular level. Astronauts and Cosmonauts have also shown suggestive increases in urinary by-products of mineralized and non-mineralized tissue degradation. Thus, the idea of assessing connective tissue and bone response in spaceflight monkeys by measurement of biomarkers in urine has merit. Other investigations of bone and connective histology, cytology and chemistry in the Bion 11 monkeys will allow for further validation of the relationship of urinary biomarkers and tissue response. In future flights the non-invasive procedure of urinary analysis may be useful in early detection of changes in these tissues. The purpose of this grant investigation was to evaluate mineralized and non-mineralized connective tissue responses of non-human primates to microgravity by the non-invasive analysis of urinary biomarkers. Secondly, we also wanted to assess muscle connective tissue adaptive changes in three weight-bearing skeletal muscles: the soleus, media] gastrocnemius and tibialis anterior by obtaining pre-flight and post-flight small biopsy specimens in collaboration with Dr. V. Reggie Edgerton's laboratory at the University of California at Los Angeles.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Life Sciences (General)
    Type: M11-1242 , 139th Annual American Public Health Association Meeting and Exposition; Oct 29, 2011 - Nov 02, 2011; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: We are designing and developing a "6U" (10 x 22 x 34 cm; 14 kg) nanosatellite as a secondary payload to fly aboard NASA's Space Launch System (SLS) Exploration Mission (EM) 1, scheduled for launch in late 2017. For the first time in over forty years, direct experimental data from biological studies beyond low Earth orbit (LEO) will be obtained during BioSentinel's 12- to 18- month mission. BioSentinel will measure the damage and repair of DNA in a biological organism and allow us to compare that to information from onboard physical radiation sensors. In order to understand the relative contributions of the space environment's two dominant biological perturbations, reduced gravity and ionizing radiation, results from deep space will be directly compared to data obtained in LEO (on ISS) and on Earth. These data points will be available for validation of existing biological radiation damage and repair models, and for extrapolation to humans, to assist in mitigating risks during future long-term exploration missions beyond LEO. The BioSentinel Payload occupies 4U of the spacecraft and will utilize the monocellular eukaryotic organism Saccharomyces cerevisiae (yeast) to report DNA double-strand-break (DSB) events that result from ambient space radiation. DSB repair exhibits striking conservation of repair proteins from yeast to humans. Yeast was selected because of 1) its similarity to cells in higher organisms, 2) the well-established history of strains engineered to measure DSB repair, 3) its spaceflight heritage, and 4) the wealth of available ground and flight reference data. The S. cerevisiae flight strain will include engineered genetic defects to prevent growth and division until a radiation-induced DSB activates the yeast's DNA repair mechanisms. The triggered culture growth and metabolic activity directly indicate a DSB and its successful repair. The yeast will be carried in the dry state within the 1-atm P/L container in 18 separate fluidics cards with each card having 16 independent culture microwells, with integral microchannels and filters to supply nutrients and reagents, confine the yeast to the wells, and enable optical measurement. The measurement subsystem will monitor each subgroup of culture wells continuously for several weeks, optically tracking DSBtriggered cell growth and metabolism. BioSentinel will also include physical radiation sensors based on the TimePix sensor, as implemented by JSC's RadWorks group, which record individual radiation events including estimates of their linear-energytransfer (LET) values. Radiation-dose and LET data will be compared directly to the rate of DSB-and-repair events measured by the S. cerevisiae biosentinels. The spacecraft bus will operate in a deep space environment with functions that include command and data handling, communications, power generation (via deployable solar panels) and storage, and attitude determination-and-control system with micropropulsion. Development of the BioSentinel spacecraft will mature and prove multiple nanosatellite advances in order to function well beyond LEO: Communications from distances of 500,000 km; Autonomous attitude control, momentum management, and safe mode of nanosatellites in deep space; Shielding-, hardening-, design-, and software-derived radiation tolerance for electronics; Reliable functionality for 12 - 18 months of key subsystems for biofluidics, memory, communications, power, etc.; Close integration of living biological radiation event monitors with miniature physical radiation spectrometers; Biological measurement of solar particle events beyond Earth orbit In addition to providing the first biological results from beyond LEO in over 4 decades, BioSentinel will provide an adaptable small-satellite instrument platform to perform a range of human-exploration-relevant measurements that characterize the biological consequences of multiple outer space environments. BioSentinel is being developed under NASA's Advanced Exploration Systems program.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN20997 , Small Satellite Conference; Aug 08, 2015 - Aug 13, 2015; Logan, Utah; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-20
    Description: Project Overview: SporeSat is a fundamental space biology science space mission to investigate biophysical mechanisms of plant gravity sensing using a "lab-on-a-chip" experimental approach. The unicellular germinating Ceratopteris richardii fern spore will be studied in outer space. Science Objective: SporeSat shall determine gravity thresholds for calcium ion (Ca2+) channel activation in wild-fern spores. Why This is Important: Ion channels are critical to the functioning of biological organisms, including humans. Ion channels are key components of the nervous system as well as cardiac, skeletal, and smooth muscle function, transport of nutrients and ions, T-cell activation, and pancreatic beta-cell insulin release. Ion channels are often the target of the search for new drugs.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN15447 , Certamen Nacional "Misiones Espaciales Mexico"; May 29, 2014 - May 30, 2014; Mexico City; Mexico
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The purpose of the present study was to examine the effects of acute (3 days) unilateral diaphragm denervation (DNV) on 1) levels of alpha 1(I) and alpha 1(III) procollagen mRNA; 2) collagen concentration [hydroxyproline (HYP)]; 3) amount of the nonreducible collagen cross-link hydroxylysylpyridinoline (HP); and 4) the passive force-length relationship of the muscle. The levels of alpha 1(I) and alpha 1(III) procollagen mRNA, HYP concentration, and amount of HP were measured in muscle segments from the midcostal region of DNV and intact (INT) hemidiaphragms of adult male Fischer 344 rats (250-300 g). The in vitro passive force-length relationship of DNV and INT hemidiaphragm was determined by lengthening and shortening the diaphragm muscle segments from 85 to 115% of optimal length at a constant velocity (0.6 optimal length/s). Three days after DNV, the level of alpha 1(I) procollagen mRNA was increased over 15-fold in the DNV hemidiaphragm compared with INT (P 〈 0.05), whereas the level of alpha 1(III) procollagen mRNA was increased by approximately sixfold in the DNV hemidiaphragm compared with INT (P 〈 0.05). Collagen (HYP) concentration did not differ between groups, averaging 8.7 and 8.9 micrograms/mg dry wt for the DNV and INT hemidiaphragms, respectively. In addition, there was no difference in the amount of the mature nonreducible collagen cross-link HP between the DNV and INT hemidiaphragms (0.66 vs. 0.76 mole HP/mole collagen, respectively). The amount of passive force developed during lengthening did not differ between DNV and INT hemidiaphragms. These data indicate that acute DNV of the hemidiaphragm is associated with an increase in the mRNA level of the two principal fibrillar collagen phenotypes in skeletal muscle. However, despite extensive muscle remodeling, the passive force-length relationship of the DNV hemidiaphragm is unaffected compared with the INT muscle.
    Keywords: Life Sciences (General)
    Type: Journal of applied physiology (Bethesda, Md. : 1985) (ISSN 8750-7587); 79; 4; 1249-54
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Patients exhibiting changes in connective tissue and bone metabolism also show changes in urinary by-products of tissue metabolism. Furthermore, the changes in urinary connective tissue and bone metabolites precede alterations at the tissue macromolecular level. Astronauts and Cosmonauts have also shown suggestive increases in urinary by-products of mineralized and non-mineralized tissue degradation. Thus, the idea of assessing connective tissue and bone response in spaceflight monkeys by measurement of biomarkers in urine has merit. Other investigations of bone and connective histology, cytology and chemistry in the Bion 11 monkeys will allow for further validation of the relationship of urinary biomarkers and tissue response. In future flights the non-invasive procedure of urinary analysis may be useful in early detection of changes in these tissues. Purpose: The purpose of this grant investigation was to evaluate mineralized and non-mineralized connective tissue responses of non-human primates to microgravity by the non-invasive analysis of urinary biomarkers. Secondly, we also wanted to assess muscle connective tissue adaptive changes in three weight-bearing skeletal muscles: the soleus, medial gastrocnemius and tibialis anterior by obtaining pre-flight and post-flight small biopsy specimens in collaboration with Dr. V. Reggie Edgerton's laboratory at the University of California at Los Angeles.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...