ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: Compared to most other Yamato polymict eucrites, Yamato Y792769 eucrite includes fewer and smaller eucritic clasts with homogenized pyroxenes, and its fine-grained matrix is shock-compacted and sintered. In this work, the relationships between the Antarctic eucrite Y792769, monomict eucrites, polymict eucrites, and isotopic ages are investigated, using results of Ar-39/Ar-40 method to date the time of the major thermal event on the Y792769 body and the Rb-Sr and Sm-Nd methods to determine whether relict older ages might have been preserved in some of the breccia materials. The Ar-39/Ar-40 time of the last thermal event which produced the Y792769 texture is 3.99 +/- 0.04 Ga. The complete resetting of the Ar-39/Ar-40 age is consistent with the texture of Y792769 observed in TEM, suggesting that shock compaction converted part of the matrix plagioclase to maskelynite. The Sm-Nd data give an age of 4.23 +/- 0.12 Ga, reflecting partial resetting of the Sm-Nd system during breccia formation. The 3.9 Ga Ar-39/Ar-40 age probably reflects a period of intense meteoroid bompardment which affected the entire inner solar system.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Geochimica et Cosmochimica Acta (ISSN 0016-7037); 57; 9; p. 2111-2121.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Neodymium, stontium, and chromium isotopic studies of the LEW86010 angrite established its absolute age and the formation interval between its crystallization and condensation of Allende CAIs from the solar nebula. Pyroxene and phosphate were found to contain approximately 8% of its Sm and Nd inventory. A conventional Sm-147-Nd-143 isochron yielded an age of 4.53 +/- 0.04 Ga (2 sigma and Epsilon(sub Nd sup 143)) = 0.45 +/- 1.1. An Sm-146-Nd-142 isochron gives initial Sm-146/Sm-144 = 0.0076 +/- 0.0009 and Epsilon (sub Nd sup 142) = -2.5 +/- 0.4. The Rb-Sr analyses give initial Sr-87/Sr-86 Iota(sub Sr sup 87) = 0.698972 +/- 8 and 0.698970 +/- 18 for LEW and ADOR, respectively, relative to Sr-87/Sr-86 = 0.71025 for NBS987. The difference, Delta Iota(sub Sr Sup 87), between Iota (sub sr sup 87) for the angrites and literature values for Allende CAIs, corresponds to approximately Ma of growth in a solar nebula with a CI chondrite value of Rb-87/Sr-86 = 0.91, or approximately 5 Ma in a nebula with solar photospheric Rb-87/Sr-86 = 1.51. Excess Cr-53 from extinct Mn-53(t(sub 1/2) = 3.7 Ma)in LEW86010 corresponds to initial Mn-53/Mn-55 = 4.4 +/- 1.0 x 10(exp -5) for the inclusions as previously reported by the Paris group (Birck and Allegre, 1988). The Sm-146/Sm-144 value found for LEW86010 corresponds to solar system initial (Sm-146/Sm-144) = 0.0080 +/- 0.0009 for crystallization 8 Ma after Allende, the difference between Pb-Pb ages of angrites and Allende, or 0.0086 +/- 0.0009 for crystallation 18 Ma after Allende, using the Mn-Cr formation interval. The isotopic data are discussed in the context of a model in which an undifferentiated 'chondritic' parent body formed from the solar nebula approximately Ma after Allende CAIs and subsequently underwent differentiation accompanied by loss of volatiles. Parent bodies with Rb/Sr similar to that of CI, CM, or CO chondrites could satisfy the Cr and Sr isotopic systematics. If the angrite parent body had Rb/Sr similar to that of CV meteorites, it would have to form slightly later, approximately 2.6 Ma after the CAIs, to satisfy the Sr and CR isotopic systematics.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Meteoritics (ISSN 0026-1114); 29; 6; p. 872-885
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-19
    Description: The petrology and chronology of early lunar crust is examined using the least equivocal of the available petrographic and age data on lunar rock samples, and the possible processes which produced the lunar crust are discussed. The results suggest that the lunar anorthositic crust was formed by about 120 Ma after the primary accretion of the moon at 4.56 Ga. At least some members of the diverse Mg-suites of rocks, such as norites, troctolites, and dunites, crystallized within a very few 100s of Ma after 4.56 Ga. A trace-element-rich material (KREEP) was formed by about 4.3 Ga ago, and this residue was subsequently reworked in melting and impact processes such that most samples which contain it have ages around 3.9-4.0 Ga. The findings also suggest that the onset of ferrous mare basalt volcanism began about 4.33 Ga, much earlier than was once assumed, and was still in process before the end of the most intense period of bombardment (3.9-4.0 Ga ago).
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Tectonophysics (ISSN 0040-1951); 161; 157-164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-19
    Description: Internal (mineral) Rb-Sr isochrons were determined for six Apollo 14 mare basalts of lunar breccia 14321. The ages of these fragments, which represent the time of crystallization of the respective mafic lavas, range from about 4.05 to 4.24, and, possibly, to 4.33 Ga and are among the oldest dates reported for mare basalts. For three of the fragments, internal Sm-Nd isochron data were collected and initial Nd isotopic composition was determined. The results are discussed with reference to the original source of these different basaltic fragments.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Geochimica et Cosmochimica Acta (ISSN 0016-7037); 51; 3241-325
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-19
    Description: Rb-Sr, K-Ar, and Sm-Nd isotopic studies were undertaken for two Apollo 14 very high potassium (VHK) highly radiogenic mare basaltic clasts from breccias 14305 and 14168. Rb-Sr data indicate ages of 3.83 + or - 0.08 b.y., and 3.82 + or - 0.12 b.y. for samples 14305 and 14168 respectively, for lambda(Rb-87) = 0.0 139/b.y. Their corresponding initial Sr-87/Sr-86 ratios are nearly identical, as well as their Ar-39 to Ar-40 age spectra, and it is proposed that they were derived from the same flow. The Sm-Nd isotopic data of whole rock and mineral separates for the two VHK basalts define an internal isochrone age of 3.94 + or - 0.16 b.y. for lambda (Sm-147) = 0.00654/b.y. and an initial Nd-143/Nd-144 of 0.50673 + or - 21. The similarity in isotopic ages suggests that VHK basalts crystallized from a melt about 3.85 b.y. ago. VHK basalts show very large Rb/Sr fractionation but no significant Sm/Nd fractionation at the time of crystallization. The source material had a Rb/Sr ratio similar to those of Apollo 14 high-Al mare basalts and a nearly chrondritic Sm/Nd ratio. Basalt/granite interaction was found to be responsible for the extreme enrichments of Rb/Sr and K/La during the formation of VHK basalts. It is concluded that K, Rb-rich components of granitic wall rocks in the highland crust were selectively introduced into ascending hot high-Al mare basaltic magma upon contact.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 91; D214-D22
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-19
    Description: Three meteorites belonging to the rare group of SNC achondrites, which may have originated in the planet Mars, have been subjected to noble gas isotopic concentration measurements. The elemental and isotopic ratios obtained are unlike those for any other noble gas components except those obtained in analyses of the Martian atmosphere by Viking spacecraft. It is hypothesized that the Kr and Xe gases represent a portion of the Martian atmosphere which was shock-implanted in the case of Elephant Moraine A79001, and that they constitute direct evidence of a Martian origin for the shergottite meteorites. If the SNC meteorites were ejected from Mars at the shergottite shock age of about 180 My ago, they must have been objects more than 6 m in diameter which experienced at least three space collisions to initiate cosmic ray exposure.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Geochimica et Cosmochimica Acta (ISSN 0016-7037); 48; 1723-173
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-19
    Description: Two aluminous mare basalt clasts of high K abundances from Apollo 14 breccia 14304 (the 14304,127 and 14304,128 samples) were characterized with respect to the Rb and Sr concentrations and isotopic compositions, and the Rb-Sr, K-Ar, and Sm-Nd isotopic age determinations were carried out. The results suggest that these high-K basalts were melts derived from mantle material and that they have experienced about ten-fold Rb/Sr and K/La enrichments at approximately the time of crystallization.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Geochimica et Cosmochimica Acta (ISSN 0016-7037); 51; 3255-327
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-19
    Description: Sr and Nd isotopic analysis of five Yamato polymict eucrites indicate that these samples formed at about 4.6 Ga ago with initial Sr and Nd ratios essentially the same as the analyzed non-Antarctic eucrites. The Yamato eucrites have Sr, Sm, and Nd concentrations that consistently lie among the highest found in eucritic samples. This characteristic identifies these Yamato samples as a closely related group. Comparisons between these Yamato samples and other Antarctic polymict eucrites clearly estabishes that they all share some characteristic trace element features. Comparisons of Antarctic polymict eucrites with non-Antarctic ordinary eucrites reveal consistent differences. The most obvious is an enrichment of Rb in the polymict eucrites. These comparisons suggest that the Antarctic polymict eucrites belong to a single large family of material that is itself fairly diverse and distinct from the non-Antarctic eucrites.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: National Institute of Polar Research, Memoirs, Special Issue (ISSN 0386-0744); 30, D
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-19
    Description: The North Ray Crater Target Rock Consortium was formed to study a large number of rake samples collected at Apollo 16 stations 11 and 13 with comparative chemical, mineralogical, and chronological techniques in order to provide a larger data base for the discussion of lunar highland evolution in the vicinity of the Apollo 16 landing region. The present investigation is concerned with Rb-Sr and Sm-Nd isotopic analyses of a number of whole-rock samples of feldspathic microporhyritic (FM) impact melt, a sample type especially abundant among the North Ray crater (station 11) sample collection. Aspects of sample mineralogy and analytical procedures are discussed, taking into account FM impact melt rocks 6715 and 63538, intergranular impact melt rock 67775, subophitic impact melt rock 67747, subophitic impact melt rock 67559, and studies based on the utilization of electron microscopy and mass spectroscopy.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research, Supplement (ISSN 0148-0227); 90; C431-C44
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-31
    Description: Very small variations in Nd-142 abundance in SNC meteorites lunar basalts, and a terrestrial supracrustal rock, have been attributed to the decay of 103 Ma Sm-146 initially present in basalt source regions in varying abundances as a result of planetary differentiation. We previously interpreted variations in Nd-142 abundances in two Apollo 17 high-Ti basalts, three Apollo 12 low-Ti basalts, and two KREEP basalts as defining an isochron giving a formation interval of approximately 94 Ma for the lunar mantle. Here we report new data for a third Apollo 17 high-Ti basalt, two Apollo 15 low-Ti basalts, the VLT basaltic lunar meteorite A881757 (formerly Asuka 31), basalt-like KREEP impact melt rocks 14310 and 14078, and three terrestrial rock standards. Those lunar samples which were not exposed to large lunar surface thermal neutron fluences yield a revised mantle formation interval of 237 +/- 64 Ma.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., The Twenty-Fifth Lunar and Planetary Science Conference. Part 2: H-O; p 1017-1018
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...