ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Key words Ascorbate
  • Hydrogen sulfide emission
  • 1
    ISSN: 1432-1939
    Keywords: Key words Ascorbate ; Glutathione reductase ; Superoxide dismutase ; Tree line growth ; Genetic variation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Clones of Norway spruce (Picea abies L.) were grown for several years on an altitudinal gradient (1750 m, 1150 m and 800 m above sea level) to study the effects of environmental × genetic interactions on growth and foliar metabolites (protein, pigments, antioxidants). Clones at the tree line showed 4.3-fold lower growth rates and contained 60% less chlorophyll (per gram of dry matter) than those at valley level. The extent of growth reduction was clone-dependent. The mortality of the clones was low and not altitude-dependent. At valley level, but not at high altitude, needles of mature spruce trees showed lower pigment and protein concentrations than clones. In general, antioxidative systems in needles of the mature trees and young clones did not increase with increasing altitude. Needles of all trees at high altitude showed higher concentrations of dehydroascorbate than at lower altitudes, indicating higher oxidative stress. In one clone, previously identified as sensitive to acute ozone doses, this increase was significantly higher and the growth reduction was stronger than in the other genotypes. This clone also displayed a significant reduction in glutathione reductase activity at high altitude. These results suggest that induction of antioxidative systems is apparently not a general prerequisite to cope with altitude in clones whose mother plants originated from higher altitudes (about 650–1100 m above sea level, Hercycnic-Carpathian distribution area), but that the genetic constitution for maintenance of high antioxidative protection is important for stress compensation at the tree line.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Cucumis ; Cysteine ; Hydrogen sulfide emission ; Sulfur cycle and metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract H2S emission from cucumber (Cucumis sativus L.) leaf discs supplied with L-cysteine in the dark is inhibited 80–90% by aminooxyacetic acid (AOA), an inhibitor of pyridoxal-phosphate dependent enzymes. Exposure to L-cysteine in the light enhanced the emission of H2S in response to this sulfur source. Turning off the light reduced the emission of H2S to the rate observed in continuous dark; turning on the light enhanced the emission of H2S to the rate observed in continuous light. Therefore, in the light H2S emission in response to L-cysteine becomes a partially light-dependent process. Treatment with cyanazine, an inhibitor of photosynthetic electron transport, reduced H2S emission in the light to the rate observed in continuous dark, but did not affect H2S emission in the dark. In leaf discs pre-exposed to L-cysteine in the light, treatment with cyanazine+ AOA inhibited the emission of H2S in response to L-cysteine completely. Therefore, only part of the H2S emitted in response to this sulfur source is derived from a light-independent, but pyridoxal-phosphate-dependent process; the balance of the H2S emitted is derived from a light-dependent process that can be inhibited by cyanazine. When cucumber leaf discs were supplied with a pulse of L-[35S]cysteine, radioactively labeled H2S was emitted in two waves, one during the first hour of exposure to L-cysteine, and a second after 3–4 h; unlabeled H2S, however, was emitted continuously. The second wave of emission of labeled H2S was not observed in pulse-chase experiments in which sulfate or cyanazine were added to the treatment solution after 3 h of exposure to L-cysteine, or when the lights was turned off. The labeling pattern of sulfur compounds inside cucumber cells supplied with a pulse of L-[35S]cysteine showed that the labeled H2S released from L-cysteine partially enters first the sulfite, then the sulfate pool of the cells. The radioactively labeled sulfate, however, is not incorporated into L-cysteine, but enters the H2S pool of the cells again. These observations are consistent with the idea of an intracellular sulfur cycle in plant cells. The L-cysteine taken up by the leaf discs seems to be desulfhydrated in a light-independent, but pyridoxal-phosphate-dependent process. The H2S synthesized this way may be partially released into the atmosphere; the other part of the H2S produced in response to L-cysteine may be oxidized to sulfite, then to sulfate, which is subsequently reduced via the light-depent sulfate assimilation pathway. In the presence of excess L-cysteine, synthesis of additional cysteine may be inhibited, and the sulfide moiety may be split off carrier bound sulfide to enter the H2S pool of the cells again. It is suggested that the function of this sulfur cycle may be regulation of the free cysteine pool.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...