ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Intelligent robot unicycle  (1)
  • Ion transport  (1)
  • 1995-1999  (2)
  • 1
    ISSN: 1433-7479
    Keywords: Key words Biomechanical model ; Soft computing algorithms ; Intelligent robot unicycle ; Robust control ; Posture stability ; Controllability ; Fuzzy control ; Entropy measure of controllability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract  The posture stability and driving control of a human-riding-type unicycle have been realized. The robot unicycle is considered as a biomechanical system using an internal world representation with a description of emotion, instinct and intuition mechanisms. We introduced intelligent control methods based on soft computing and confirmed that such an intelligent control and biological instinct as well as intuition together with a fuzzy inference is very important for emulating human behaviors or actions. Intuition and instinct mechanisms are considered as global and local search mechanisms of the optimal solution domains for an intelligent behavior and can be realized by genetic algorithms (GA) and fuzzy neural networks (FNN) accordingly. For the fitness function of the GA, a new physical measure as the minimum entropy production for a description of the intelligent behavior in a biological model is introduced. The calculation of robustness and controllability of the robot unicycle is presented. This paper provides a general measure to estimate the mechanical controllability qualitatively and quantitatively, even if any control scheme is applied. The measure can be computed using a Lyapunov function coupled with the thermodynamic entropy change. Interrelation between Lyapunov function (stability condition) and entropy production of motion (controllability condition) in an internal biomechanical model is a mathematical background for the design of soft computing algorithms for the intelligent control of the robotic unicycle. Fuzzy simulation and experimental results of a robust intelligent control motion for the robot unicycle are discussed. Robotic unicycle is a new Benchmark of non-linear mechatronics and intelligent smart control.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Key words Brood pouch ; Epithelium ; Mitochondria-rich cell ; Na+ ; K+-ATPase ; Ion transport ; Pipefish ; Syngnathus schlegeli (Teleostei)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The brood pouch of the male pipefish (Syngnathus schlegeli) is a ventral organ located on the tail, with the anterior region closely associated with the genital pore. The embryos in the pouch are attached to highly vascularized placenta-like tissue which seals the pouch folds from inside during incubation. The epithelium of the placenta-like tissue consists of mitochondria-rich cells (MRCs) and pavement cells. Differences in MRC morphology in the brood pouch epithelium, the gills and the larval epidermis of the pipefish were examined by light and electron microscopy. Transmission electron microscopy revealed that the MRCs in the brood pouch and the gills shared common characteristics: the presence of numerous mitochondria packed among a well-developed tubular system and the close association of the basal parts with the capillaries running underneath the epithelia. The size of the apical opening of the elongate, flask-shaped brood pouch MRC was about one-tenth that of the apical pit of the gill MRC. The gill and larval epidermal MRCs formed a multicellular complex, in contrast to solitary brood pouch MRCs. The brood pouch MRCs were intensively stained by immunocytochemistry with an antiserum specific for Na+,K+-ATPase. The Na+ concentrations in the brood pouch were maintained near those in the serum rather than seawater during incubation. We conclude that the brood pouch MRCs function as an ion-transporting cell, absorbing ions from the brood pouch lumen, perhaps to protect the embryos from the hyperosmotic environment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...