ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(3), (2019): 2088-2109, doi:10.1029/2018JC014583.
    Description: As observations and models improve their resolution of oceanic motions at ever finer horizontal scales, interest has grown in characterizing the transition from the geostrophically balanced flows that dominate at large‐scale to submesoscale turbulence and waves that dominate at small scales. In this study we examine the mesoscale‐to‐submesoscale (100 to 10 km) transition in an eastern boundary current, the southern California Current System (CCS), using repeated acoustic Doppler current profiler transects, sea surface height from high‐resolution nadir altimetry and output from a (1/48)° global model simulation. In the CCS, the submesoscale is as energetic as in western boundary current regions, but the mesoscale is much weaker, and as a result the transition lacks the change in kinetic energy (KE) spectral slope observed for western boundary currents. Helmholtz and vortex‐wave decompositions of the KE spectra are used to identify balanced and unbalanced contributions. At horizontal scales greater than 70 km, we find that observed KE is dominated by balanced geostrophic motions. At scales from 40 to 10 km, unbalanced contributions such as inertia‐gravity waves contribute as much as balanced motions. The model KE transition occurs at longer scales, around 125 km. The altimeter spectra are consistent with acoustic Doppler current profiler/model spectra at scales longer than 70/125 km, respectively. Observed seasonality is weak. Taken together, our results suggest that geostrophic velocities can be diagnosed from sea surface height on scales larger than about 70 km in the southern CCS.
    Description: This research was funded by NASA (NNX13AE44G, NNX13AE85G, NNX16AH67G, NNX16AO5OH, and NNX17AH53G). We thank Sung Yong Kim for providing the high‐frequency radar spectral estimates and the two anonymous reviewers for providing useful comments and suggestions that greatly improved the manuscript. High‐frequency ALES data for Jason‐1 and Jason‐2 altimeters are available upon request (https://openadb.dgfi.tum.de/en/contact/ALES). Both AltiKa and Sentinel‐3 altimeter products were produced and distributed by the Copernicus Marine and Environment Monitoring Service (CMEMS; http://www.marine.copernicus.eu). D. M. worked on the modeling component of this study at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). High‐end computing resources were provided by the NASA Advanced Supercomputing (NAS) Division of the Ames Research Center. The LLC output can be obtained from the ECCO project (ftp://ecco.jpl.nasa.gov/ECCO2/LLC4320/). The ADCP data are available at the Joint Archive for Shipboard ADCP data (JASADCP; http://ilikai.soest.hawaii.edu/sadcp).
    Description: 2019-08-21
    Keywords: Mesoscale ; Submesoscale ; Internal gravity waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(6), (2019): 1577-1592, doi:10.1175/JPO-D-18-0124.1.
    Description: The main source feeding the abyssal circulation of the North Pacific is the deep, northward flow of 5–6 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) through the Samoan Passage. A recent field campaign has shown that this flow is hydraulically controlled and that it experiences hydraulic jumps accompanied by strong mixing and dissipation concentrated near several deep sills. By our estimates, the diapycnal density flux associated with this mixing is considerably larger than the diapycnal flux across a typical isopycnal surface extending over the abyssal North Pacific. According to historical hydrographic observations, a second source of abyssal water for the North Pacific is 2.3–2.8 Sv of the dense flow that is diverted around the Manihiki Plateau to the east, bypassing the Samoan Passage. This bypass flow is not confined to a channel and is therefore less likely to experience the strong mixing that is associated with hydraulic transitions. The partitioning of flux between the two branches of the deep flow could therefore be relevant to the distribution of Pacific abyssal mixing. To gain insight into the factors that control the partitioning between these two branches, we develop an abyssal and equator-proximal extension of the “island rule.” Novel features include provisions for the presence of hydraulic jumps as well as identification of an appropriate integration circuit for an abyssal layer to the east of the island. Evaluation of the corresponding circulation integral leads to a prediction of 0.4–2.4 Sv of bypass flow. The circulation integral clearly identifies dissipation and frictional drag effects within the Samoan Passage as crucial elements in partitioning the flow.
    Description: This work was supported by the National Science Foundation under Grants OCE-1029268, OCE-1029483, OCE-1657264, OCE-1657870, OCE-1658027, and OCE-1657795. We thank the captain, crew, and engineers at APL/UW for their hard work and skill.
    Description: 2020-06-11
    Keywords: Abyssal circulation ; Bottom currents ; Boundary currents ; Channel flows ; Mixing ; Transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 7803–7821, doi:10.1002/2017JC013009.
    Description: Two global ocean models ranging in horizontal resolution from 1/12° to 1/48° are used to study the space and time scales of sea surface height (SSH) signals associated with internal gravity waves (IGWs). Frequency-horizontal wavenumber SSH spectral densities are computed over seven regions of the world ocean from two simulations of the HYbrid Coordinate Ocean Model (HYCOM) and three simulations of the Massachusetts Institute of Technology general circulation model (MITgcm). High wavenumber, high-frequency SSH variance follows the predicted IGW linear dispersion curves. The realism of high-frequency motions (〉0:87 cpd) in the models is tested through comparison of the frequency spectral density of dynamic height variance computed from the highest-resolution runs of each model (1/25° HYCOM and 1/48° MITgcm) with dynamic height variance frequency spectral density computed from nine in situ profiling instruments. These high-frequency motions are of particular interest because of their contributions to the small-scale SSH variability that will be observed on a global scale in the upcoming Surface Water and Ocean Topography (SWOT) satellite altimetry mission. The variance at supertidal frequencies can be comparable to the tidal and low-frequency variance for high wavenumbers (length scales smaller than ∼50 km), especially in the higher-resolution simulations. In the highest-resolution simulations, the high-frequency variance can be greater than the low-frequency variance at these scales.
    Description: National Aeronautics and Space Administration (NASA) Earth and Space Science Fellowship Grant Number: NNX16AO23H Margaret and Herman Sokol Faculty; Office of Naval Research (ONR) Grant Numbers: N00014-15-1-2288 , N00014-11-1-0487; National Science Foundation (NSF) Grant Numbers: OCE-0968783 , OCE-1351837 , NNX13AE32G , NNX16AH76G , NNX13AE46 , NNX13AD95Q , NNX16AH79G
    Description: 2018-04-10
    Keywords: Internal gravity waves ; Internal tides ; Sea surface height variability ; High-resolution ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...