ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-18
    Description: The Infrared Multi-Object Spectrometer (IRMOS) is a facility instrument for the Kitt Peak National Observatory 4 and 2.1 meter telescopes. IRMOS is a near-IR (0.8 - 2.5 micron) spectrometer with low- to mid-resolving power (R = 300 - 3000). IRMOS produces simultaneous spectra of approximately 100 objects in its 2.8 x 2.0 arc-min field of view using a commercial Micro Electro-Mechanical Systems (MEMS) Digital Micro-mirror Device (DMD) from Texas Instruments. The IRMOS optical design consists of two imaging subsystems. The focal reducer images the focal plane of the telescope onto the DMD field stop, and the spectrograph images the DMD onto the detector. We describe ambient breadboard subsystem alignment and imaging performance of each stage independently, and the ambient and cryogenic imaging performance of the fully assembled instrument. Interferometric measurements of subsystem wavefront error serve to venfy alignment, and are accomplished using a commercial, modified Twyman-Green laser unequal path interferometer. Image testing provides further verification of the optomechanical alignment method and a measurement of near-angle scattered light due to mirror small-scale surface error. Image testing is performed at multiple field points. A mercury-argon pencil lamp provides spectral lines at 546.1 nm and 1550 nm, and a CCD camera and IR camera are used as detectors. We use commercial optical modeling software to predict the point-spread function and its effect on instrument slit transmission and resolution. Our breadboard test results validate this prediction. We conclude with an instrument performance prediction for first light.
    Keywords: Instrumentation and Photography
    Type: SPIE-Optical Science and Technology Annual Meeting; Aug 03, 2003 - Aug 08, 2003; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: We describe the population, optomechanical alignment, and alignment verification of near-infrared gratings on the grating wheel mechanism (GWM) for the Infrared Multi- Object Spectrometer (IRMOS). IRMOS is a cryogenic (80 K) facility instrument for the Mayall Telescope (3.8 m) at Kitt Peak National Observatory and a MEMS spectrometer concept demonstrator for NASA's James Webb Space Telescope. The IRMOS optics, bench, and mechanisms are predominantly made of Al 6061 -T651. The GWM consists of 13 planar diffraction gratings and one flat imaging mirror (58 x 57 mm), each mounted at a unique compound angle on a 31.8 cm diameter gear. The Al 6061 grating substrates are stress relieved for enhanced cryogenic performance and the optical surface is replicated from an off-the-shelf master. The imaging mirror is diamond turned and post-polished. The grating mechanism spans a projected diameter of approximately 48cm when fully assembled, utilizes several flexure designs throughout the system to accommodate thermal gradient situations, and is controlled using custom software with an off-the-shelf controller. Each optic is aligned in six degrees of freedom relative to the GWM coordinate system, which is defined relative to an optical alignment cube mounted at the center of the gear. The tip/tilt (Rx, Ry) orientation of a given grating is measured using the zero-order return from an autocollimating theodolite. Each optic's mount includes a one-piece shim located between the optic and the gear. The shim is machined to fine align each optic. We also describe alignment verification, where grating diffractive properties are compared to model predictions.
    Keywords: Instrumentation and Photography
    Type: SPIE-Optical Science and Technology Annual Meeting; Aug 03, 2003 - Aug 08, 2003; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: We present a formal comparison of the performance of algorithms used for synthesis imaging with optical/infrared long-baseline interferometers. Six different algorithms are evaluated based on their performance with simulated test data. Each set of test data is formated in the interferometry Data Exchange Standard and is designed to simulate a specific problem relevant to long-baseline imaging. The data are calibrated power spectra and bispectra measured with a ctitious array, intended to be typical of existing imaging interferometers. The strengths and limitations of each algorithm are discussed.
    Keywords: Instrumentation and Photography
    Type: SPIE Astronomical Telescopes and Instrumentation 2004; Jun 21, 2004 - Jun 25, 2004; Glasgow, Scotland; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The Infrared Multi-Object Spectrometer (IRMOS) is a facility-class instrument for the Kitt Peak National Observatory 4 and 2.1 meter telescopes. IRMOS is a near-IR (0.8-2.5 micron) spectrometer and operates at approximately 80 K. The 6061-T651 aluminum bench and mirrors constitute an athermal design. The instrument produces simultaneous spectra at low- to mid-resolving power (R=lambda/delta lambda= 300-3000) of approximately 100 objects in its 2.8 x 2.0 arcmin field. We describe ambient and cryogenic optical testing of the IRMOS mirrors across a broad range in spatial frequency (figure error, mid-frequency error, and microroughness). The mirrors include three rotationally symmetric, off-axis conic sections, one off-axis biconic, and several flat fold mirrors. The symmetric mirrors include convex and concave prolate and oblate ellipsoids. They range in aperture from 94x86 mm to 286x269 mm and in f-number from 0.9 to 2.4. The biconic mirror is concave and has a 94x76 mm aperture, R(sub x)=377 mm, k(sub x)=0.0778, R(sub y)=407 mm, and k(sub y)=0.1265 and is decentered by -2 mm in X and 227 mm in Y. All of the mirrors have an aspect ratio of approximately 6:1. The surface error fabrication tolerances are less than 10 nm RMS microroughness, 'best effort' for mid-frequency error, and less than 63.3 nm RMS figure error. Ambient temperature (approximately 293 K) testing is performed for each of the three surface error regimes, and figure testing is also performed at approximately 80 K. Operation of the ADE Phaseshift MicroXAM white light interferometer (micro-roughness) and the Bauer Model 200 profilometer (mid-frequency error) is described. Both the sag and conic values of the aspheric mirrors make these tests challenging. Figure testing is performed using a Zygo GPI interferometer, custom computer generated holograms (CGH), and optomechanical alignment fiducials. Cryogenic CGH null testing is discussed in detail. We discuss complications such as the change in prescription with temperature and thermal gradients. Correction for the effect of the dewar window is also covered. We discuss the error budget for the optical test and alignment procedure. Data reduction is accomplished using commercial optical design and data analysis software packages. Results from CGH testing at cryogenic temperatures are encouraging thus far.
    Keywords: Instrumentation and Photography
    Type: SPIE Conference; Aug 21, 2002 - Aug 30, 2002; Kona, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-03
    Description: The main source of error in retrieving aerosol optical thicknesses using sun photometry comes from the determination of the TOA voltages. The degradation of interference filters is the most important source of the long-term changes in the cross-calibrations. Although major improvements have been made in the design of the filters (interference filters fabricated using ion-assisted deposition), the filters remain the principal factor limiting performance of the sun photometers. Degradation of filters necessitates frequent calibration of sun photometers and frequent measurements of the filter transmission or the relative system response. The degradation of the filters mounted on the CIMEL sun photometers have been monitored since 1993 by the Aerosol Robotic Network (AERONET) project. The decay reported by Holben et al. for the first two years of a CIMEL#s operation is between 1 and 5%. Nevertheless, the filters mounted on CIMEL instruments are regularly replaced after two years of use. The cross-calibration technique consists of taking measurements concurrently with the uncalibrated and the reference sun photometers. While analyzing measurements, the quality of the calibration has to be checked, using the following considerations: (1) any cirrus clouds suspected to be masking the sun, during the calibration period, need to be reported and the corresponding data set removed; and (2) the stability of the day needs to be checked. This chapter will describe calibration techniques, facilities, and protocols used for calibrating sun photometers and sky radiometers.
    Keywords: Instrumentation and Photography
    Type: In Situ Aerosol Optical Thinkness Collected by the SIMBIOS Program (1997-2000): Protocols, and and Data QC and Analysis; 11-21; NASA/TM-2001-209982
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-12-03
    Description: This abstract describes an instrument and experiment to be proposed for a future Mars surface mission to conduct basic research on environmental characterization. The Regolith Evolved Gas Analyzer (REGA) experiment is designed to provide information on Mars surface material properties in preparation for human missions of exploration. The goals of the investigation are: 1) Define and determine surface mineralogy of soil and dust and their effects on humans and machines; and 2) Conduct in-situ investigations aimed at identifying possible evidence of past or present life on Mars.
    Keywords: Instrumentation and Photography
    Type: Concepts and Approaches for Mars Exploration; Part 1; 148-149; LPI-Contrib-1062-Pt-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-12-03
    Description: The direct detection of organic biomarkers for living or fossil microbes on Mars by an in situ instrument is a worthy goal for future lander missions. We have proposed an instrument based on immunological reactions to specific antibodies to cause activation of fluorescent stains. Antibodies are raised or acquired to a variety of general and specific substances that might be in Mars soil. These antibodies are then combined with various fluorescent stains and applied to small numbered spots on a small (two to three centimeters) test plate where they become firmly attached after drying. On Mars, a sample of soil from a trench or drill core is extracted with water and/or an organic solvent that is then applied to the test plate. Any substance, which has an antibody on the test plate, will react with its antibody and activate its fluorescent stain. A small ultraviolet light source will illuminate the test plate, which is observed with a small CCD camera. The numbered spots that fluoresce indicate the presence of the tested-for substance, and the intensity indicates relative amounts. The entire instrument can be quite small and light, on the order of ten cm in each dimension. A possible choice for light source may be small UV lasers at several wavelengths. Up to 1000 different sample spots can be placed on a plate 3 cm on a side, but a more practical number might be 100. Each antibody can have a redundant position for independent verification of reaction. Some of the wells or spots can contain simply standard fluorescent stains used to detect live cells, dead cells, DNA, etc. These the stains in these spots may be directly activated; no antibodies are necessary.
    Keywords: Instrumentation and Photography
    Type: Concepts and Approaches for Mars Exploration; Part 2; 219-220; LPI-Contrib-1062-Pt-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-31
    Description: Thin-film membrane structures are under consideration for use in many future gossamer spacecraft systems. Examples include sunshields for large aperture telescopes, solar sails, and membrane optics. The development of capabilities for testing and analyzing pre-tensioned, thin film membrane structures is an important and challenging aspect of gossamer spacecraft technology development. This paper presents results from experimental and computational studies performed to characterize the wrinkling behavior of thin-fi[m membranes under mechanical loading. The test article is a 500 mm square membrane subjected to symmetric comer loads. Data is presented for loads ranging from 0.49 N to 4.91 N. The experimental results show that as the load increases the number of wrinkles increases, while the wrinkle amplitude decreases. The computational model uses a finite element implementation of Stein-Hedgepeth membrane wrinkling theory to predict the behavior of the membrane. Comparisons were made with experimental results for the wrinkle angle and wrinkled region. There was reasonably good agreement between the measured wrinkle angle and the predicted directions of the major principle stresses. The shape of the wrinkle region predicted by the finite element model matches that observed in the experiments; however, the size of the predicted region is smaller than that determined in the experiments.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-08-29
    Description: This paper presents experimental data that demonstrates the feasibility of fabricating a miniature nuclear particle dosimeter for monitoring doses in aircraft and satellites. The basic instrument is a Low Linear-Energy-Transfer (LET) Radiation Spectrometer (LoLRS) that is designed to measure the energy deposited by particles with low LET values. The heart of the instrument is a Silicon-Lithium Drifted Diode (SLDD). Test results show that the LoLRS can be used to monitor the radiation threat to personnel in flights of space- and aircraft and also to generate a comprehensive data base from aviation and satellite measurements that can contribute to the formulation of more accurate environmental radiation models for dose predictions with reduced uncertainty factors.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-29
    Description: We consider the optimum design of photon-counting microlaser altimeters operating from airborne and spaceborne platforms under both day and night conditions. Extremely compact Q-switched microlaser transmitters produce trains of low energy pulses at multi-kHz rates and can easily generate subnanosecond pulse-widths for precise ranging. To guide the design, we have modeled the solar noise background and developed simple algorithms, based on Post-Detection Poisson Filtering (PDPF), to optimally extract the weak altimeter signal from a high noise background during daytime operations. Practical technology issues, such as detector and/or receiver dead times, have also been considered in the analysis. We describe an airborne prototype, being developed under NASA's instrument Incubator Program, which is designed to operate at a 10 kHz rate from aircraft cruise altitudes up to 12 km with laser pulse energies on the order of a few microjoules. We also analyze a compact and power efficient system designed to operate from Mars orbit at an altitude of 300 km and sample the Martian surface at rates up to 4.3 kHz using a 1 watt laser transmitter and an 18 cm telescope. This yields a Power-Aperture Product of 0.24 W-square meter, corresponding to a value almost 4 times smaller than the Mars Orbiting Laser Altimeter (0. 88W-square meter), yet the sampling rate is roughly 400 times greater (4 kHz vs 10 Hz) Relative to conventional high power laser altimeters, advantages of photon-counting laser altimeters include: (1) a more efficient use of available laser photons providing up to two orders of magnitude greater surface sampling rates for a given laser power-telescope aperture product; (2) a simultaneous two order of magnitude reduction in the volume, cost and weight of the telescope system; (3) the unique ability to spatially resolve the source of the surface return in a photon counting mode through the use of pixellated or imaging detectors; and (4) improved vertical and transverse spatial resolution resulting from both (1) and (3). Furthermore, because of significantly lower laser pulse energies, the microaltimeter is inherently more eyesafe to observers on the ground and less prone to internal optical damage, which can terminate a space mission prematurely.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...