ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-11-12
    Description: Fire frequency is assumed to have exerted a strong influence on historical forest communities in the inland Pacific Northwest. This study reconstructs forest structure and composition in the year 1890 and fire frequency from 1760 to 1890 at 10 sites spanning a broad productivity gradient in the southern Blue Mountains of eastern Oregon. We tested for the relative influence of fire frequency, climate, soils, and topography by fitting variables to ordinations of forest structural and compositional configurations. We also built formal statistical models using non-parametric permutational multivariate analysis of variance. Because fire disturbance and biophysical influences on forest structure and composition may vary depending on the scale at which relationships are examined, we tested the influence of variables at the scale of 4- to 12-ha sites and at the scale of three equal-sized areas within each site. The proportion of fire-intolerant species basal area reconstructed within sites in the year 1890 ranged from 0% to 43%. The proportion of fire-intolerant species basal area reconstructed within equal-sized areas within sites ranged from 0% to 75%. Despite significant differences in historical species composition between and within sites, fire frequencies were relatively similar. Mean fire return intervals (MFRIs) calculated for sites ranged from 10.6 to 21.2 yr. MFRIs calculated for equal-sized areas within sites ranged from 10.6 to 28.8 yr. Fitting fire frequency and biophysical variables to ordinations and model building with perMANOVA showed that topographic position index and vapor pressure deficit had stronger influences on site-scale forest structure and composition than fire frequency metrics. Available soil water was the most important influence on forest structure and composition within equal-sized areas within sites. Relatively frequent fire across a broad range of forest types in the southern Blues appears to have been a relatively uniform influence on forest dynamics modulated by fine-scale biophysical heterogeneity. If return to historical conditions is a goal of management, treatments to reduce fuel and restore frequent fire are appropriate across a broad productivity gradient in the southern Blues.
    Electronic ISSN: 2150-8925
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1979-06-01
    Print ISSN: 0005-2760
    Electronic ISSN: 1879-145X
    Topics: Biology , Chemistry and Pharmacology , Medicine , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1990-01-01
    Print ISSN: 0304-4165
    Electronic ISSN: 1872-8006
    Topics: Biology , Chemistry and Pharmacology , Medicine , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-12-03
    Description: The performance of a significant number of spacecraft has been impacted negatively by attitude disturbances resulting from thermally-induced motions of flexible structures. Recent examples of spacecraft affected by these disturbances include the Hubble Space Telescope (HST) and the Upper Atmosphere Research Satellite (UARS). Thermally-induced structural disturbances occur as the result of rapid changes in thermal loading typically initiated as a satellite exits or enters the Earth's shadow. Temperature differences in flexible appendages give rise to structural deformations, which in turn result in disturbance torques reacting back on the spacecraft. Structures which have proven susceptible to these disturbances include deployable booms and solar arrays. This paper investigates disturbances resulting from thermally-induced deformations of rigid panel solar arrays. An analytical model for the thermal-structural response of the solar array and the corresponding disturbance torque are presented. The effect of these disturbances on the attitude dynamics of a simple spacecraft is then investigated using a coupled system of governing equations which includes the effects of thermally-induced deformations. Numerical results demonstrate the effect of varying solar array geometry on the dynamic response of the system.
    Keywords: Energy Production and Conversion
    Type: Flight Mechanics Symposium 1997; 33-47; NASA-CP-3345
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-31
    Description: Thin-film membrane structures are under consideration for use in many future gossamer spacecraft systems. Examples include sunshields for large aperture telescopes, solar sails, and membrane optics. The development of capabilities for testing and analyzing pre-tensioned, thin film membrane structures is an important and challenging aspect of gossamer spacecraft technology development. This paper presents results from experimental and computational studies performed to characterize the wrinkling behavior of thin-fi[m membranes under mechanical loading. The test article is a 500 mm square membrane subjected to symmetric comer loads. Data is presented for loads ranging from 0.49 N to 4.91 N. The experimental results show that as the load increases the number of wrinkles increases, while the wrinkle amplitude decreases. The computational model uses a finite element implementation of Stein-Hedgepeth membrane wrinkling theory to predict the behavior of the membrane. Comparisons were made with experimental results for the wrinkle angle and wrinkled region. There was reasonably good agreement between the measured wrinkle angle and the predicted directions of the major principle stresses. The shape of the wrinkle region predicted by the finite element model matches that observed in the experiments; however, the size of the predicted region is smaller than that determined in the experiments.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-06
    Description: The James Web Space Telescope (JWST) is a large, infrared-optimized space telescope scheduled for launch in 2011. System-level verification of critical optical performance requirements will rely on integrated modeling to a considerable degree. In turn, requirements for accuracy of the models are significant. The size of the lightweight observatory structure, coupled with the need to test at cryogenic temperatures, effectively precludes validation of the models and verification of optical performance with a single test in 1-g. Rather, a complex series of steps are planned by which the components of the end-to-end models are validated at various levels of subassembly, and the ultimate verification of optical performance is by analysis using the assembled models. This paper describes the critical optical performance requirements driving the integrated modeling activity, shows how the error budget is used to allocate and track contributions to total performance, and presents examples of integrated modeling methods and results that support the preliminary observatory design. Finally, the concepts for model validation and the role of integrated modeling in the ultimate verification of observatory are described.
    Keywords: Astronautics (General)
    Type: SPIE Conference on Space Systems Optomechanics and Dynamics; Unknown
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-06
    Description: The development of gossamer space structures such as solar sails and sunshields presents many challenges due to their large size and extreme flexibility. The post-deployment structural geometry exhibited during ground testing may significantly depart from the in-space configuration due to the presence of gravity-induced deformations (gravity sag) of lightly preloaded membranes. This paper describes a study carried out to characterize gravity sag in two subscale gossamer structures: a single quadrant from a 2 m, 4 quadrant square solar sail and a 1.7 m membrane layer from a multi-layer sunshield The behavior of the test articles was studied over a range of preloads and in several orientations with respect to gravity. An experimental study was carried out to measure the global surface profiles using photogrammetry, and nonlinear finite element analysis was used to predict the behavior of the test articles. Comparison of measured and predicted surface profiles shows that the finite dement analysis qualitatively predicts deformed shapes comparable to those observed in the laboratory. Quantitatively, finite element analysis predictions for peak gravity-induced deformations in both test articles were within 10% of measured values. Results from this study provide increased insight into gravity sag behavior in gossamer structures, and demonstrates the potential to analytically predict gravity-induced deformations to within reasonable accuracy.
    Keywords: Mechanical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Structure is a precision optical metering structure for the JWST science instruments. Optomechanical performance requirements place stringent limits on the allowable thermal distortion of the metering structure. A significant effort was completed to develop capabilities to predict and metrologize cryogenic thermal distortion of the ISIM Structure. This paper focuses on thermal distortion finite element modeling, analysis, and model validation. Extensive thermal distortion analysis was completed during the design phase for the ISIM Structure to demonstrate that thermal distortion requirements were achieved. Comparison of measurements from recently completed cryogenic testing and model predictions demonstrate the adequacy of thermal distortion modeling uncertainty factors adopted during the design phase, and provide bounds on the accuracy of the model predictions. This paper will provide an overview of the test configurations, describe the thermal distortion models of the tests, and provide a comparison of test results and analytical predictions from the models.
    Keywords: Astronomy
    Type: GSFC.CP.4914.2011 , SPIE International Symposium on Optics and Photonics, Cryogenic Optical Systems and Instruments XIV (OP407); Aug 21, 2011 - Aug 25, 2011; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Structure is a precision optical metering structure for the JWST science instruments. Optomechanical performance requirements place stringent limits on the allowable thermal distortion of the metering structure between ambient and cryogenic operating temperature (~35 K). This paper focuses on thermal distortion testing and successful verification of performance requirements for the flight ISIM Structure. The ISIM Structure Cryoset Test was completed in Spring 2010 at NASA Goddard Space Flight Center in the Space Environment Simulator Chamber. During the test, the ISIM Structure was thermal cycled twice between ambient and cryogenic (~35 K) temperatures. Photogrammetry was used to measure the Structure in the ambient and cryogenic states for each cycle to assess both cooldown thermal distortion and repeatability. This paper will provide details on the post-processing of the metrology datasets completed to compare measurements with performance requirements.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GSFC.CP.4913.2011 , SPIE International Symposium on Optics and Photonics, Cryogenic Optical Systems and Instruments XIV(OP407); Aug 21, 2011 - Aug 25, 2011; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The NGST sunshield is a lightweight, flexible structure consisting of pretensioned membranes supported by deployable booms. The structural dynamic behavior of the sunshield must be well understood in order to predict its influence on observatory performance. A 1/10th scale model of the sunshield has been developed for ground testing to provide data to validate modeling techniques for thin film membrane structures. The validated models can then be used to predict the behaviour of the full scale sunshield. This paper summarizes the most recent tests performed on the 1/10th scale sunshield to study the effect of membrane preload on sunshield dynamics. Topics to be covered include the test setup, procedures, and a summary of results.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AIAA Paper 2002-1459 , AIAA Gossamer Spacecraft Forum; Apr 22, 2002 - Apr 25, 2002; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...