ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-19
    Description: The technique of laser heterodyne spectroscopy has been applied to the measurement of solar oscillations. Coherent mixing of solar radiation with the output of a frequency-stabilized CO2 laser permits the measurement of fully resolved profiles of solar absorption lines with high spectral purity and excellent frequency stability. This technique has been used to measure OH pure rotation lines in the infrared solar spectrum. Power spectra of these line frequency measurements show the well-known 5-min oscillations as well as significant velocity power at shorter periods.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Applied Optics (ISSN 0003-6935); 25; 58-62
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-18
    Description: A diode-laser-based, ultrahigh resolution IR heterodyne spectrometer for laboratory and field use has been developed for operation between 7.5 and 8.5 microns. The local oscillator is a PbSe tunable diode laser kept continuously at operating temperatures of 12-60 K using a closed-cycle cooler. The laser output frequency is controlled and stabilized using a high-precision diode current supply, constant temperature controller, and a shock isolator mounted between the refrigerator cold tip and the diode mount. The system largely employs reflecting optics to minimize losses from internal reflection and absorption and to eliminate chromatic effects. Spectral analysis of the diode-laser output between 0 and 1 GHz reveals excess noise at many diode current settings, which limits the IR spectral regions over which useful heterodyne operation can be achieved. Observations have been made of atmospheric N2O, O3, and CH4 between 1170 and 1200/cm, using both a single-frequency swept IF channel and a 64-channel RF spectral line receiver with a total IF coverage of 1600 MHz.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Applied Optics; 21; Jan. 15
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-28
    Description: A compact, acousto-optic tunable filter (AOTF) imaging spectropolarimeter for ground based astronomy from 400-1100 nm has been constructed at NASA/GSFC. The key components of this instrument are a TeO2 non-collinear AOTF, CCD camera, and an all-reflective optical relay assembly which uses a single elliptical mirror to produce side-by-side orthogonally polarized spectral images. The instrument was used at the Lowell Observatory 42-inch telescope for 'first light' planetary imaging and measurements of photometric standard stars. Narrow-band images of Saturn near 700 nm appear to show polarization effects which result from multiple scattering by aerosols. The instrument has recently been upgraded in order to integrate the RF drive electronics and eliminate contamination by scattered light. Design of the instrument and some initial results are presented.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: In: Polarization and remote sensing; Proceedings of the Meeting, San Diego, CA, July 22, 23, 1992 (A93-30026 11-35); p. 92-101.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: A novel cryogenic grating spectrometer (FCAS) is being designed for observations of volatiles in cometary and planetary atmospheres, and in newly forming planetary systems. The instrument features two-dimensional detector arrays coupled to a high-dispersion echelle by infrared fibers, and will achieve a spectral resolving power of about 40,000. The primary observational platform for this instrument will be the Kuiper Airborne Observatory, but it will also be configured for use at ground-based observatories. Initially, the spectrometer will use a 58 x 62, 1- to 5-micron InSb array. Larger-format IR arrays and arrays of different composition, will later be incorporated as they become available. The instrument will be used in two modes. The first uses a large format IR array in the spectral image plane for the customary one-dimensional spectral-one-dimensional spatial coverage. In the second mode, a massive, coherent bundle of infrared transmitting ZrF4 fibers will be installed after the dispersive element, to reformat the two-dimensional array into an elongated one-dimensional array for wide spectral coverage, allowing multiple lines to be measured in a single integration with high sensitivity. The overall instrument design is discussed, and the system sensitivity is estimated.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Instrumentation in Astronomy VII; Feb 13, 1990 - Feb 17, 1990; Tucson, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Infrared heterodyne spectroscopy is a passive technique employing coherent optical detection for the study of spectral features in remote sources. It employs optical components such as mirrors and lenses normally associated with incoherent optics, but because of it's coherent nature, it offers the advantages of ultrahigh spectral resolving power, high frequency precision, and diffraction limited field-of-view. Attention is given to the development of an ultrahigh resolution diode laser heterodyne spectrometer for observational and laboratory use. The instrument is designed for operation in the spectral range from 7.5 to 8.5 microns. A PbSe tuneable diode laser (TDL) is employed as local oscillator. A closed-cycle cooler is employed to keep the oscillator at operating temperatures in the range from 12 to 60 K. Attention is given to factors determining the TDL heterodyne sensitivity, the spectrometer design, and a survey of 8 micron observations, SiO could be detected in the sunspot spectrum.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Instrumentation in astronomy IV; Fourth Conference; Mar 08, 1982 - Mar 10, 1982; Tucson, AZ
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...