ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-04-05
    Description: The Sir2 family of enzymes or sirtuins are known as nicotinamide adenine dinucleotide (NAD)-dependent deacetylases and have been implicated in the regulation of transcription, genome stability, metabolism and lifespan. However, four of the seven mammalian sirtuins have very weak deacetylase activity in vitro. Here we show that human SIRT6 efficiently removes long-chain fatty acyl groups, such as myristoyl, from lysine residues. The crystal structure of SIRT6 reveals a large hydrophobic pocket that can accommodate long-chain fatty acyl groups. We demonstrate further that SIRT6 promotes the secretion of tumour necrosis factor-alpha (TNF-alpha) by removing the fatty acyl modification on K19 and K20 of TNF-alpha. Protein lysine fatty acylation has been known to occur in mammalian cells, but the function and regulatory mechanisms of this modification were unknown. Our data indicate that protein lysine fatty acylation is a novel mechanism that regulates protein secretion. The discovery of SIRT6 as an enzyme that controls protein lysine fatty acylation provides new opportunities to investigate the physiological function of a protein post-translational modification that has been little studied until now.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3635073/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3635073/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Hong -- Khan, Saba -- Wang, Yi -- Charron, Guillaume -- He, Bin -- Sebastian, Carlos -- Du, Jintang -- Kim, Ray -- Ge, Eva -- Mostoslavsky, Raul -- Hang, Howard C -- Hao, Quan -- Lin, Hening -- R01 CA175727/CA/NCI NIH HHS/ -- R01 DK088190/DK/NIDDK NIH HHS/ -- R01 GM086703/GM/NIGMS NIH HHS/ -- R01 GM087544/GM/NIGMS NIH HHS/ -- R01 GM093072/GM/NIGMS NIH HHS/ -- R01GM086703/GM/NIGMS NIH HHS/ -- R01GM087544/GM/NIGMS NIH HHS/ -- R01GM093072/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 Apr 4;496(7443):110-3. doi: 10.1038/nature12038.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23552949" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Binding Sites ; Crystallography, X-Ray ; Fatty Acids/*chemistry/*metabolism ; Humans ; Hydrolysis ; Hydrophobic and Hydrophilic Interactions ; Lysine/*analogs & derivatives/chemistry/*metabolism ; Protein Processing, Post-Translational ; Sirtuins/chemistry/*metabolism ; Tumor Necrosis Factor-alpha/chemistry/metabolism/*secretion
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-11-15
    Description: Silent information regulator 2 (Sir2) proteins (sirtuins) are nicotinamide adenine dinucleotide-dependent deacetylases that regulate important biological processes. Mammals have seven sirtuins, Sirt1 to Sirt7. Four of them (Sirt4 to Sirt7) have no detectable or very weak deacetylase activity. We found that Sirt5 is an efficient protein lysine desuccinylase and demalonylase in vitro. The preference for succinyl and malonyl groups was explained by the presence of an arginine residue (Arg(105)) and tyrosine residue (Tyr(102)) in the acyl pocket of Sirt5. Several mammalian proteins were identified with mass spectrometry to have succinyl or malonyl lysine modifications. Deletion of Sirt5 in mice appeared to increase the level of succinylation on carbamoyl phosphate synthase 1, which is a known target of Sirt5. Thus, protein lysine succinylation may represent a posttranslational modification that can be reversed by Sirt5 in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3217313/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3217313/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Du, Jintang -- Zhou, Yeyun -- Su, Xiaoyang -- Yu, Jiu Jiu -- Khan, Saba -- Jiang, Hong -- Kim, Jungwoo -- Woo, Jimin -- Kim, Jun Huyn -- Choi, Brian Hyun -- He, Bin -- Chen, Wei -- Zhang, Sheng -- Cerione, Richard A -- Auwerx, Johan -- Hao, Quan -- Lin, Hening -- 231138/European Research Council/International -- DK58920/DK/NIDDK NIH HHS/ -- P41 RR001646/RR/NCRR NIH HHS/ -- P41 RR001646-27/RR/NCRR NIH HHS/ -- R01 GM086703/GM/NIGMS NIH HHS/ -- R01 GM086703-03/GM/NIGMS NIH HHS/ -- R01 GM086703-03S1/GM/NIGMS NIH HHS/ -- R01GM086703/GM/NIGMS NIH HHS/ -- RR01646/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2011 Nov 11;334(6057):806-9. doi: 10.1126/science.1207861.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22076378" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Carbamoyl-Phosphate Synthase (Ammonia)/metabolism ; Cattle ; Crystallography, X-Ray ; Histones/metabolism ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Kinetics ; Lysine/*metabolism ; Male ; Mice ; Mice, Knockout ; Mitochondria, Liver/metabolism ; NAD/metabolism ; Peptides/*metabolism ; Protein Processing, Post-Translational ; Sirtuins/chemistry/genetics/*metabolism ; Succinic Acid/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...