ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-19
    Description: Latency and ongoing replication have both been proposed to explain the drug-insensitive human immunodeficiency virus (HIV) reservoir maintained during antiretroviral therapy. Here we explore a novel mechanism for ongoing HIV replication in the face of antiretroviral drugs. We propose a model whereby multiple infections per cell lead to reduced sensitivity to drugs without requiring drug-resistant mutations, and experimentally validate the model using multiple infections per cell by cell-free HIV in the presence of the drug tenofovir. We then examine the drug sensitivity of cell-to-cell spread of HIV, a mode of HIV transmission that can lead to multiple infection events per target cell. Infections originating from cell-free virus decrease strongly in the presence of antiretrovirals tenofovir and efavirenz whereas infections involving cell-to-cell spread are markedly less sensitive to the drugs. The reduction in sensitivity is sufficient to keep multiple rounds of infection from terminating in the presence of drugs. We examine replication from cell-to-cell spread in the presence of clinical drug concentrations using a stochastic infection model and find that replication is intermittent, without substantial accumulation of mutations. If cell-to-cell spread has the same properties in vivo, it may have adverse consequences for the immune system, lead to therapy failure in individuals with risk factors, and potentially contribute to viral persistence and hence be a barrier to curing HIV infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sigal, Alex -- Kim, Jocelyn T -- Balazs, Alejandro B -- Dekel, Erez -- Mayo, Avi -- Milo, Ron -- Baltimore, David -- HHSN266200500035C/PHS HHS/ -- T32 AI089398/AI/NIAID NIH HHS/ -- England -- Nature. 2011 Aug 17;477(7362):95-8. doi: 10.1038/nature10347.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21849975" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/analogs & derivatives/pharmacology ; Anti-Retroviral Agents/*pharmacology ; Cell Line ; Drug Resistance, Viral/physiology ; HEK293 Cells ; HIV Infections/transmission/*virology ; HIV-1/drug effects/*physiology ; Humans ; Models, Biological ; Organophosphonates/pharmacology ; Tenofovir ; Virus Replication/drug effects/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-11-20
    Description: Oxidative stress promotes genomic instability and human diseases. A common oxidized nucleoside is 8-oxo-7,8-dihydro-2'-deoxyguanosine, which is found both in DNA (8-oxo-G) and as a free nucleotide (8-oxo-dGTP). Nucleotide pools are especially vulnerable to oxidative damage. Therefore cells encode an enzyme (MutT/MTH1) that removes free oxidized nucleotides. This cleansing function is required for cancer cell survival and to modulate Escherichia coli antibiotic sensitivity in a DNA polymerase (pol)-dependent manner. How polymerases discriminate between damaged and non-damaged nucleotides is not well understood. This analysis is essential given the role of oxidized nucleotides in mutagenesis, cancer therapeutics, and bacterial antibiotics. Even with cellular sanitizing activities, nucleotide pools contain enough 8-oxo-dGTP to promote mutagenesis. This arises from the dual coding potential where 8-oxo-dGTP(anti) base pairs with cytosine and 8-oxo-dGTP(syn) uses its Hoogsteen edge to base pair with adenine. Here we use time-lapse crystallography to follow 8-oxo-dGTP insertion opposite adenine or cytosine with human pol beta, to reveal that insertion is accommodated in either the syn- or anti-conformation, respectively. For 8-oxo-dGTP(anti) insertion, a novel divalent metal relieves repulsive interactions between the adducted guanine base and the triphosphate of the oxidized nucleotide. With either templating base, hydrogen-bonding interactions between the bases are lost as the enzyme reopens after catalysis, leading to a cytotoxic nicked DNA repair intermediate. Combining structural snapshots with kinetic and computational analysis reveals how 8-oxo-dGTP uses charge modulation during insertion that can lead to a blocked DNA repair intermediate.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312183/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312183/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Freudenthal, Bret D -- Beard, William A -- Perera, Lalith -- Shock, David D -- Kim, Taejin -- Schlick, Tamar -- Wilson, Samuel H -- 1U19CA105010/CA/NCI NIH HHS/ -- U19 CA177547/CA/NCI NIH HHS/ -- Z01-ES050158/ES/NIEHS NIH HHS/ -- Z01-ES050161/ES/NIEHS NIH HHS/ -- ZIA ES050158-18/Intramural NIH HHS/ -- ZIA ES050159-18/Intramural NIH HHS/ -- ZIC-ES043010/ES/NIEHS NIH HHS/ -- England -- Nature. 2015 Jan 29;517(7536):635-9. doi: 10.1038/nature13886. Epub 2014 Nov 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, PO Box 12233, Research Triangle Park, North Carolina 27709-2233, USA. ; 1] Department of Chemistry, New York University, and NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 10th Floor Silver Center, 100 Washington Square East, New York, New York 10003, USA [2] Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409153" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/chemistry/metabolism ; Base Pairing ; Catalytic Domain ; Crystallography, X-Ray ; Cytosine/chemistry/metabolism ; Cytotoxins/chemistry/*metabolism/toxicity ; DNA/biosynthesis/chemistry ; *DNA Damage ; DNA Polymerase beta/*chemistry/*metabolism ; DNA Repair ; DNA Replication ; Deoxyguanine Nucleotides/chemistry/*metabolism/*toxicity ; Guanine/analogs & derivatives/chemistry/metabolism ; Humans ; Hydrogen Bonding ; Kinetics ; Models, Molecular ; Molecular Conformation ; *Mutagenesis ; Neoplasms/enzymology/genetics ; Oxidation-Reduction ; Oxidative Stress ; Static Electricity ; Substrate Specificity ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-20
    Description: Most cancer cells are characterized by aneuploidy, an abnormal number of chromosomes. We have identified a clue to the mechanistic origins of aneuploidy through integrative genomic analyses of human tumors. A diverse range of tumor types were found to harbor deletions or inactivating mutations of STAG2, a gene encoding a subunit of the cohesin complex, which regulates the separation of sister chromatids during cell division. Because STAG2 is on the X chromosome, its inactivation requires only a single mutational event. Studying a near-diploid human cell line with a stable karyotype, we found that targeted inactivation of STAG2 led to chromatid cohesion defects and aneuploidy, whereas in two aneuploid human glioblastoma cell lines, targeted correction of the endogenous mutant alleles of STAG2 led to enhanced chromosomal stability. Thus, genetic disruption of cohesin is a cause of aneuploidy in human cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374335/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374335/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Solomon, David A -- Kim, Taeyeon -- Diaz-Martinez, Laura A -- Fair, Joshlean -- Elkahloun, Abdel G -- Harris, Brent T -- Toretsky, Jeffrey A -- Rosenberg, Steven A -- Shukla, Neerav -- Ladanyi, Marc -- Samuels, Yardena -- James, C David -- Yu, Hongtao -- Kim, Jung-Sik -- Waldman, Todd -- CA097257/CA/NCI NIH HHS/ -- R01 CA133662/CA/NCI NIH HHS/ -- R01 CA138212/CA/NCI NIH HHS/ -- R01 CA169345/CA/NCI NIH HHS/ -- R01CA115699/CA/NCI NIH HHS/ -- R21CA143282/CA/NCI NIH HHS/ -- Z01 HG200337-01/Intramural NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Aug 19;333(6045):1039-43. doi: 10.1126/science.1203619.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC 20057, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21852505" target="_blank"〉PubMed〈/a〉
    Keywords: *Aneuploidy ; Antigens, Nuclear/*genetics/*physiology ; Cell Cycle ; Cell Line ; Cell Line, Tumor ; Chromatids/physiology ; *Chromosomal Instability ; Chromosomes, Human, X/genetics ; Female ; Gene Deletion ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Gene Silencing ; Gene Targeting ; Glioblastoma/*genetics ; Humans ; Karyotyping ; Male ; Melanoma/genetics ; Mutation ; Neoplasms/*genetics ; Polymorphism, Single Nucleotide ; Sarcoma, Ewing/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-09-21
    Description: Soluble beta-amyloid (Abeta) oligomers impair synaptic plasticity and cause synaptic loss associated with Alzheimer's disease (AD). We report that murine PirB (paired immunoglobulin-like receptor B) and its human ortholog LilrB2 (leukocyte immunoglobulin-like receptor B2), present in human brain, are receptors for Abeta oligomers, with nanomolar affinity. The first two extracellular immunoglobulin (Ig) domains of PirB and LilrB2 mediate this interaction, leading to enhanced cofilin signaling, also seen in human AD brains. In mice, the deleterious effect of Abeta oligomers on hippocampal long-term potentiation required PirB, and in a transgenic model of AD, PirB not only contributed to memory deficits present in adult mice, but also mediated loss of synaptic plasticity in juvenile visual cortex. These findings imply that LilrB2 contributes to human AD neuropathology and suggest therapeutic uses of blocking LilrB2 function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853120/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853120/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Taeho -- Vidal, George S -- Djurisic, Maja -- William, Christopher M -- Birnbaum, Michael E -- Garcia, K Christopher -- Hyman, Bradley T -- Shatz, Carla J -- 5P50AG005134/AG/NIA NIH HHS/ -- 5R01AG041507/AG/NIA NIH HHS/ -- 5T32EY020485/EY/NEI NIH HHS/ -- EY02858/EY/NEI NIH HHS/ -- K08 NS069811/NS/NINDS NIH HHS/ -- K08NS069811/NS/NINDS NIH HHS/ -- NS069375/NS/NINDS NIH HHS/ -- R01 AG041507/AG/NIA NIH HHS/ -- R01 EY002858/EY/NEI NIH HHS/ -- R01 MH071666/MH/NIMH NIH HHS/ -- T32 EY020485/EY/NEI NIH HHS/ -- T32 MH020016/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Sep 20;341(6152):1399-404. doi: 10.1126/science.1242077.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Bio-X, James H. Clark Center, Stanford University, Stanford, CA 94305, USA. tkim808@stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24052308" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/*physiopathology ; Amyloid beta-Peptides/*metabolism/pharmacology ; Animals ; Disease Models, Animal ; Female ; HEK293 Cells ; Hippocampus/physiopathology ; Humans ; Long-Term Potentiation ; Male ; Membrane Glycoproteins/genetics/*physiology ; Mice ; Mice, Transgenic ; *Neuronal Plasticity ; Peptide Fragments/*metabolism/pharmacology ; Receptors, Immunologic/genetics/*physiology ; Synapses/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...