ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-07-11
    Description: Humans often cooperate in public goods games and situations ranging from family issues to global warming. However, evolutionary game theory predicts that the temptation to forgo the public good mostly wins over collective cooperative action, and this is often also seen in economic experiments. Here we show how social diversity provides an escape from this apparent paradox. Up to now, individuals have been treated as equivalent in all respects, in sharp contrast with real-life situations, where diversity is ubiquitous. We introduce social diversity by means of heterogeneous graphs and show that cooperation is promoted by the diversity associated with the number and size of the public goods game in which each individual participates and with the individual contribution to each such game. When social ties follow a scale-free distribution, cooperation is enhanced whenever all individuals are expected to contribute a fixed amount irrespective of the plethora of public goods games in which they engage. Our results may help to explain the emergence of cooperation in the absence of mechanisms based on individual reputation and punishment. Combining social diversity with reputation and punishment will provide instrumental clues on the self-organization of social communities and their economical implications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Santos, Francisco C -- Santos, Marta D -- Pacheco, Jorge M -- England -- Nature. 2008 Jul 10;454(7201):213-6. doi: 10.1038/nature06940.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Recherches Interdisciplinaires et de Developpements en Intelligence Artificielle (IRIDIA), Computer and Decision Engineering Department, Universite Libre de Bruxelles, B-1050 Brussels, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18615084" target="_blank"〉PubMed〈/a〉
    Keywords: Biological Evolution ; *Cooperative Behavior ; Economics ; *Game Theory ; Humans ; Interpersonal Relations ; Punishment
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-09-22
    Description: The molecular adapter Fyb/Slap regulates signaling downstream of the T cell receptor (TCR), but whether it plays a positive or negative role is controversial. We demonstrate that Fyb/Slap-deficient T cells exhibit defective proliferation and cytokine production in response to TCR stimulation. Fyb/Slap is also required in vivo for T cell-dependent immune responses. Functionally, Fyb/Slap has no apparent role in the activation of known TCR signaling pathways, F-actin polymerization, or TCR clustering. Rather, Fyb/Slap regulates TCR-induced integrin clustering and adhesion. Thus, Fyb/Slap is the first molecular adapter to be identified that couples TCR stimulation to the avidity modulation of integrins governing T cell adhesion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Griffiths, E K -- Krawczyk, C -- Kong, Y Y -- Raab, M -- Hyduk, S J -- Bouchard, D -- Chan, V S -- Kozieradzki, I -- Oliveira-Dos-Santos, A J -- Wakeham, A -- Ohashi, P S -- Cybulsky, M I -- Rudd, C E -- Penninger, J M -- New York, N.Y. -- Science. 2001 Sep 21;293(5538):2260-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Amgen Institute, 620 University Avenue, Toronto, Ontario, Canada M5G 2C1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11567140" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; *Adaptor Proteins, Signal Transducing ; Animals ; Antigens, CD/metabolism ; Antigens, CD3/metabolism ; Antigens, Differentiation, T-Lymphocyte/metabolism ; B-Lymphocytes/immunology ; Carrier Proteins/genetics/*physiology ; Cell Adhesion ; Cell Adhesion Molecules/metabolism ; Chimera ; Gene Targeting ; Humans ; Immunization ; Immunoglobulin G/biosynthesis ; Integrins/*metabolism ; Intercellular Adhesion Molecule-1/metabolism ; Interferon-gamma/biosynthesis ; Interleukin-2/biosynthesis/pharmacology ; Lectins, C-Type ; *Lymphocyte Activation ; Lymphocyte Function-Associated Antigen-1/metabolism ; Mice ; Phosphoproteins/genetics/*physiology ; Receptors, Antigen, T-Cell/immunology/metabolism ; Receptors, Interleukin-2/metabolism ; Recombinant Proteins/metabolism ; Signal Transduction ; T-Lymphocytes/immunology/metabolism/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1988-03-25
    Description: Peroxisomes are apparently missing in Zellweger syndrome; nevertheless, some of the integral membrane proteins of the organelle are present. Their distribution was studied by immunofluorescence microscopy. In control fibroblasts, peroxisomes appeared as small dots. In Zellweger fibroblasts, the peroxisomal membrane proteins were located in unusual empty membrane structures of larger size. These results suggest that the primary defect in this disease may be in the mechanism for import of matrix proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Santos, M J -- Imanaka, T -- Shio, H -- Small, G M -- Lazarow, P B -- AM19394/AM/NIADDK NIH HHS/ -- New York, N.Y. -- Science. 1988 Mar 25;239(4847):1536-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rockefeller University, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3281254" target="_blank"〉PubMed〈/a〉
    Keywords: Fibroblasts/analysis/ultrastructure ; Fluorescent Antibody Technique ; Genetic Diseases, Inborn/metabolism/*pathology ; Humans ; Intracellular Membranes/analysis/pathology ; Membrane Proteins/*analysis ; Microbodies/analysis/*pathology ; Organoids/analysis/pathology ; Syndrome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1991-04-26
    Description: The effect of nerve growth factor (NGF) was assessed in Xenopus oocytes expressing the human trk proto-oncogene product, p140prototrk. Oocytes injected with trk messenger RNA expressed polypeptides recognized by antibodies to the trk gene product. Exposure of these oocytes to nanomolar amounts of NGF resulted in specific surface binding of 125I-labeled NGF, tyrosine phosphorylation of p140prototrk, and meiotic maturation, as determined by germinal vesicle breakdown and maturation promoting factor (p34cdc2) kinase activation. Thus the trk proto-oncogene product can act as a receptor for NGF in a functionally productive manner.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nebreda, A R -- Martin-Zanca, D -- Kaplan, D R -- Parada, L F -- Santos, E -- New York, N.Y. -- Science. 1991 Apr 26;252(5005):558-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1850550" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Enzyme Activation ; Female ; Humans ; In Vitro Techniques ; Kinetics ; Meiosis/*drug effects ; Microinjections ; Nerve Growth Factors/metabolism/*pharmacology ; Oocytes/cytology/drug effects/*physiology ; Progesterone/pharmacology ; Protein-Tyrosine Kinases/genetics ; Proto-Oncogene Proteins/*genetics/metabolism ; *Proto-Oncogenes ; RNA, Messenger/administration & dosage/genetics ; Receptor, trkA ; Receptors, Cell Surface/drug effects/metabolism ; Receptors, Nerve Growth Factor ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-08-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanchez, Pedro A -- Ahamed, Sonya -- Carre, Florence -- Hartemink, Alfred E -- Hempel, Jonathan -- Huising, Jeroen -- Lagacherie, Philippe -- McBratney, Alex B -- McKenzie, Neil J -- Mendonca-Santos, Maria de Lourdes -- Minasny, Budiman -- Montanarella, Luca -- Okoth, Peter -- Palm, Cheryl A -- Sachs, Jeffrey D -- Shepherd, Keith D -- Vagen, Tor-Gunnar -- Vanlauwe, Bernard -- Walsh, Markus G -- Winowiecki, Leigh A -- Zhang, Gan-Lin -- New York, N.Y. -- Science. 2009 Aug 7;325(5941):680-1. doi: 10.1126/science.1175084.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Earth Institute at Columbia University, 61 Route 9W, Palisades, NY 10964, USA. psanchez@ei.columbia.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19661405" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture ; Climate ; *Databases, Factual ; *Ecology ; Ecosystem ; Environment ; Humans ; *Soil/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-01-06
    Description: Apicomplexan parasites invade host cells and immediately initiate cell division. The extracellular parasite discharges transmembrane proteins onto its surface to mediate motility and invasion. These are shed by intramembrane cleavage, a process associated with invasion but otherwise poorly understood. Functional analysis of Toxoplasma rhomboid 4, a surface intramembrane protease, by conditional overexpression of a catalytically inactive form produced a profound block in replication. This was completely rescued by expression of the cleaved cytoplasmic tail of Toxoplasma or Plasmodium apical membrane antigen 1 (AMA1). These results reveal an unexpected function for AMA1 in parasite replication and suggest that invasion proteins help to promote parasite switch from an invasive to a replicative mode.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Santos, Joana M -- Ferguson, David J P -- Blackman, Michael J -- Soldati-Favre, Dominique -- MC_U117532063/Medical Research Council/United Kingdom -- U117532063/Medical Research Council/United Kingdom -- Howard Hughes Medical Institute/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2011 Jan 28;331(6016):473-7. doi: 10.1126/science.1199284. Epub 2010 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Faculty of Medicine, University of Geneva, 1 rue-Michel Servet, 1211 Geneva 4, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21205639" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Protozoan/chemistry/genetics/*metabolism ; Cell Cycle ; Cell Division ; Cell Membrane/metabolism ; Cells, Cultured ; Fibroblasts/parasitology ; Humans ; Membrane Proteins/chemistry/genetics/*metabolism ; Movement ; Mutant Proteins/metabolism ; Plasmodium falciparum ; Protozoan Proteins/chemistry/genetics/*metabolism ; Serine Proteases/genetics/metabolism ; Signal Transduction ; Toxoplasma/cytology/growth & development/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2003-12-20
    Description: Alternative pre-messenger RNA (pre-mRNA) splicing plays important roles in development, physiology, and disease, and more than half of human genes are alternatively spliced. To understand the biological roles and regulation of alternative splicing across different tissues and stages of development, systematic methods are needed. Here, we demonstrate the use of microarrays to monitor splicing at every exon-exon junction in more than 10,000 multi-exon human genes in 52 tissues and cell lines. These genome-wide data provide experimental evidence and tissue distributions for thousands of known and novel alternative splicing events. Adding to previous studies, the results indicate that at least 74% of human multi-exon genes are alternatively spliced.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson, Jason M -- Castle, John -- Garrett-Engele, Philip -- Kan, Zhengyan -- Loerch, Patrick M -- Armour, Christopher D -- Santos, Ralph -- Schadt, Eric E -- Stoughton, Roland -- Shoemaker, Daniel D -- New York, N.Y. -- Science. 2003 Dec 19;302(5653):2141-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rosetta Inpharmatics LLC, Merck & Co., Inc., 12040 115th Avenue N.E., Kirkland, WA 98034, USA. jason_johnson@merck.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14684825" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Amyloid beta-Protein Precursor/analysis/genetics ; Cell Line ; DNA, Complementary ; *Exons ; Expressed Sequence Tags ; *Genome, Human ; Humans ; Hydroxymethylglutaryl CoA Reductases/analysis/genetics ; Molecular Sequence Data ; *Oligonucleotide Array Sequence Analysis ; *Phosphoric Monoester Hydrolases ; Protein Isoforms/analysis ; Proteins/analysis/genetics ; RNA Precursors/*genetics ; ROC Curve ; Reverse Transcriptase Polymerase Chain Reaction ; Tissue Distribution
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-02-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zucco, Carlos A -- Oliveira-Santos, Luiz Gustavo R -- Fernandez, Fernando A S -- England -- Nature. 2011 Feb 17;470(7334):335. doi: 10.1038/470335a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21331027" target="_blank"〉PubMed〈/a〉
    Keywords: Brazil ; Disasters/*prevention & control/statistics & numerical data ; Ecology/legislation & jurisprudence/methods ; Environmental Policy/*legislation & jurisprudence ; Floods/mortality ; Forestry/*legislation & jurisprudence/methods ; Humans ; Landslides/mortality ; Rain
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-02-22
    Description: Mechanotransduction has an important role in physiology. Biological processes including sensing touch and sound waves require as-yet-unidentified cation channels that detect pressure. Mouse Piezo1 (MmPiezo1) and MmPiezo2 (also called Fam38a and Fam38b, respectively) induce mechanically activated cationic currents in cells; however, it is unknown whether Piezo proteins are pore-forming ion channels or modulate ion channels. Here we show that Drosophila melanogaster Piezo (DmPiezo, also called CG8486) also induces mechanically activated currents in cells, but through channels with remarkably distinct pore properties including sensitivity to the pore blocker ruthenium red and single channel conductances. MmPiezo1 assembles as a approximately 1.2-million-dalton homo-oligomer, with no evidence of other proteins in this complex. Purified MmPiezo1 reconstituted into asymmetric lipid bilayers and liposomes forms ruthenium-red-sensitive ion channels. These data demonstrate that Piezo proteins are an evolutionarily conserved ion channel family involved in mechanotransduction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3297710/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3297710/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coste, Bertrand -- Xiao, Bailong -- Santos, Jose S -- Syeda, Ruhma -- Grandl, Jorg -- Spencer, Kathryn S -- Kim, Sung Eun -- Schmidt, Manuela -- Mathur, Jayanti -- Dubin, Adrienne E -- Montal, Mauricio -- Patapoutian, Ardem -- R01 DE022115/DE/NIDCR NIH HHS/ -- R01 DE022115-01/DE/NIDCR NIH HHS/ -- R01 DE022115-02/DE/NIDCR NIH HHS/ -- R01 GM049711/GM/NIGMS NIH HHS/ -- R01 NS046303/NS/NINDS NIH HHS/ -- R01 NS046303-09/NS/NINDS NIH HHS/ -- England -- Nature. 2012 Feb 19;483(7388):176-81. doi: 10.1038/nature10812.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22343900" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Drosophila Proteins/chemistry/genetics/metabolism ; Drosophila melanogaster ; Electric Conductivity ; HEK293 Cells ; HeLa Cells ; Humans ; *Ion Channel Gating ; Ion Channels/*chemistry/genetics/*metabolism ; Lipid Bilayers/chemistry/metabolism ; Mechanotransduction, Cellular/*physiology ; Mice ; Molecular Sequence Data ; NIH 3T3 Cells ; Porosity ; Protein Multimerization ; Protein Subunits/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-01-11
    Description: Histone deacetylase enzymes (HDACs) are emerging cancer drug targets. They regulate gene expression by removing acetyl groups from lysine residues in histone tails, resulting in chromatin condensation. The enzymatic activity of most class I HDACs requires recruitment into multi-subunit co-repressor complexes, which are in turn recruited to chromatin by repressive transcription factors. Here we report the structure of a complex between an HDAC and a co-repressor, namely, human HDAC3 with the deacetylase activation domain (DAD) from the human SMRT co-repressor (also known as NCOR2). The structure reveals two remarkable features. First, the SMRT-DAD undergoes a large structural rearrangement on forming the complex. Second, there is an essential inositol tetraphosphate molecule--D-myo-inositol-(1,4,5,6)-tetrakisphosphate (Ins(1,4,5,6)P(4))--acting as an 'intermolecular glue' between the two proteins. Assembly of the complex is clearly dependent on the Ins(1,4,5,6)P(4), which may act as a regulator--potentially explaining why inositol phosphates and their kinases have been found to act as transcriptional regulators. This mechanism for the activation of HDAC3 appears to be conserved in class I HDACs from yeast to humans, and opens the way to novel therapeutic opportunities.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272448/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272448/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Watson, Peter J -- Fairall, Louise -- Santos, Guilherme M -- Schwabe, John W R -- 085408/Wellcome Trust/United Kingdom -- 100237/Wellcome Trust/United Kingdom -- WT085408/Wellcome Trust/United Kingdom -- England -- Nature. 2012 Jan 9;481(7381):335-40. doi: 10.1038/nature10728.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester LE1 9HN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22230954" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Conserved Sequence ; Crystallography, X-Ray ; Enzyme Activation/drug effects ; Histone Deacetylases/*chemistry/*metabolism ; Humans ; Inositol Phosphates/*chemistry/*metabolism/pharmacology ; Models, Molecular ; Molecular Sequence Data ; Molecular Targeted Therapy ; Multiprotein Complexes/chemistry/metabolism ; Nuclear Receptor Co-Repressor 2/*chemistry ; Protein Multimerization/drug effects ; Protein Structure, Tertiary/drug effects ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...