ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1990-11-09
    Description: The regulation of DNA replication during the eukaryotic cell cycle was studied in a system where cell free replication of simian virus 40 (SV40) DNA was used as a model for chromosome replication. A factor, RF-S, was partially purified from human S phase cells based on its ability to activate DNA replication in extracts from G1 cells. RF-S contained a human homologue of the Schizosaccharomyces pombe p34cdc2 kinase, and this kinase was necessary for RF-S activity. The limiting step in activation of the p34 kinase at the G1 to S transition may be its association with a cyclin since addition of cyclin A to a G1 extract was sufficient to start DNA replication. These observations suggest that the role of p34cdc2 in controlling the start of DNA synthesis has been conserved in evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉D'Urso, G -- Marraccino, R L -- Marshak, D R -- Roberts, J M -- New York, N.Y. -- Science. 1990 Nov 9;250(4982):786-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98104.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2173140" target="_blank"〉PubMed〈/a〉
    Keywords: Burkitt Lymphoma ; CDC2 Protein Kinase/genetics/*physiology ; *Cell Cycle ; Cyclins/pharmacology ; *DNA Replication ; Humans ; Interphase ; Phosphorylation ; Schizosaccharomyces/enzymology ; Simian virus 40/*genetics/physiology ; Tumor Cells, Cultured ; *Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1992-09-18
    Description: Human cyclin E, originally identified on the basis of its ability to function as a G1 cyclin in budding yeast, associated with a cell cycle-regulated protein kinase in human cells. The cyclin E-associated kinase activity peaked during G1, before the appearance of cyclin A, and was diminished during exit from the cell cycle after differentiation or serum withdrawal. The major cyclin E-associated kinase in human cells was Cdk2 (cyclin-dependent kinase 2). The abundance of the cyclin E protein and the cyclin E-Cdk2 complex was maximal in G1 cells. These results provide further evidence that in all eukaryotes assembly of a cyclin-Cdk complex is an important step in the biochemical pathway that controls cell proliferation during G1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koff, A -- Giordano, A -- Desai, D -- Yamashita, K -- Harper, J W -- Elledge, S -- Nishimoto, T -- Morgan, D O -- Franza, B R -- Roberts, J M -- New York, N.Y. -- Science. 1992 Sep 18;257(5077):1689-94.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98104.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1388288" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/metabolism ; *CDC2-CDC28 Kinases ; Cell Line ; Cyclin-Dependent Kinase 2 ; *Cyclin-Dependent Kinases ; Cyclins/*metabolism ; Flow Cytometry ; G1 Phase/*physiology ; Humans ; Immunoblotting ; Immunosorbent Techniques ; Protein Kinases/*metabolism ; *Protein-Serine-Threonine Kinases ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-03-26
    Description: Eukaryotic cells become committed to proliferate during the G1 phase of the cell cycle. In budding yeast, commitment occurs when the catalytic subunit of a protein kinase, encoded by the CDC28 gene (the homolog of the fission yeast cdc2+ gene), binds to a positively acting regulatory subunit, a cyclin. Related kinases are also required for progression through the G1 phase in higher eukaryotes. The role of cyclins in controlling G1 progression in mammalian cells was tested by construction of fibroblasts that constitutively overexpress human cyclin E. This was found to shorten the duration of G1, decrease cell size, and diminish the serum requirement for the transition from G1 to S phase. These observations show that cyclin levels can be rate-limiting for G1 progression in mammalian cells and suggest that cyclin synthesis may be the target of physiological signals that control cell proliferation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ohtsubo, M -- Roberts, J M -- New York, N.Y. -- Science. 1993 Mar 26;259(5103):1908-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98104.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8384376" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Division/physiology ; Cell Line ; Cloning, Molecular ; Cyclins/genetics/*physiology ; Fibroblasts/*cytology/metabolism ; Flow Cytometry ; G1 Phase/*physiology ; Gene Expression ; Genetic Vectors ; Humans ; Kanamycin Kinase ; Male ; Phosphotransferases/genetics ; Rats ; Recombinant Fusion Proteins/metabolism ; Retroviridae/genetics ; S Phase/physiology ; Time Factors ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1993-12-03
    Description: Cell adhesion has an essential role in regulating proliferation during the G1 phase of the cell cycle, and loss of this adhesion requirement is a classic feature of oncogenic transformation. The appearance of cyclin A messenger RNA and protein in late G1 was dependent on cell adhesion in both NRK and NIH 3T3 fibroblasts. In contrast, the expression of Cdc2, Cdk2, cyclin D1, and cyclin E was independent of adhesion in both cell lines. Transfection of NRK cells with a cyclin A complementary DNA resulted in adhesion-independent accumulation of cyclin A protein and cyclin A-associated kinase activity. These transfected cells also entered S phase and complete multiple rounds of cell division in the absence of cell adhesion. Thus, cyclin A is a target of the adhesion-dependent signals that control cell proliferation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guadagno, T M -- Ohtsubo, M -- Roberts, J M -- Assoian, R K -- GM48224/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Dec 3;262(5139):1572-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8248807" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; CDC2 Protein Kinase/biosynthesis ; *CDC2-CDC28 Kinases ; Cell Adhesion/*physiology ; Cell Cycle/*physiology ; Cell Line ; Cyclin-Dependent Kinase 2 ; *Cyclin-Dependent Kinases ; Cyclins/*biosynthesis ; Fibroblasts/cytology/metabolism ; Gene Expression Regulation ; Humans ; Mice ; Protein Kinases/biosynthesis ; *Protein-Serine-Threonine Kinases ; Rats ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1988-09-16
    Description: An in vitro assay was developed to study the positive factors that regulate the onset of DNA replication during the mammalian cell cycle. Extracts prepared from cells at defined positions in the cell cycle were used to examine the replication of SV40 DNA in a cell free system. Extracts prepared from S phase cells were ten times more efficient at initiating replication at the SV40 origin than were extracts from G1 cells, whereas elongation rates were similar in G1 and S reactions. At a discrete point in the cell cycle, just before the cell's entry into S, an activity appeared that was required, in conjunction with SV40 T antigen, for site specific initiation at the SV40 origin. This factor had a role in unwinding DNA at the replication origin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roberts, J M -- D'Urso, G -- AG0005/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 1988 Sep 16;241(4872):1486-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Fred Hutchinson Cancer Research Center, Seattle, WA 98104.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2843984" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Polyomavirus Transforming/physiology ; *Cell Cycle ; Cell Line ; Cell-Free System ; *DNA Replication ; Humans ; In Vitro Techniques ; Interphase ; Simian virus 40/genetics ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-08-23
    Description: The mechanisms by which quiescent cells, including adult stem cells, preserve their ability to resume proliferation after weeks or even years of cell cycle arrest are not known. We report that reversibility is not a passive property of nondividing cells, because enforced cell cycle arrest for a period as brief as 4 days initiates spontaneous, premature, and irreversible senescence. Increased expression of the gene encoding the basic helix-loop-helix protein HES1 was required for quiescence to be reversible, because HES1 prevented both premature senescence and inappropriate differentiation in quiescent fibroblasts. In some human tumors, the HES1 pathway was activated, which allowed these cells to evade differentiation and irreversible cell cycle arrest. We conclude that HES1 safeguards against irreversible cell cycle exit both during normal cellular quiescence and pathologically in the setting of tumorigenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2721335/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2721335/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sang, Liyun -- Coller, Hilary A -- Roberts, James M -- P50 GM071508/GM/NIGMS NIH HHS/ -- P50 GM071508-05/GM/NIGMS NIH HHS/ -- R01 CA118043/CA/NCI NIH HHS/ -- R01 CA118043-03/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Aug 22;321(5892):1095-100. doi: 10.1126/science.1155998.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18719287" target="_blank"〉PubMed〈/a〉
    Keywords: Basic Helix-Loop-Helix Transcription Factors/genetics/*metabolism ; Cell Aging ; *Cell Cycle ; Cell Differentiation ; Cell Line ; Cell Line, Tumor ; *Cell Proliferation ; Cyclin-Dependent Kinase Inhibitor p21/metabolism ; Fibroblasts/*cytology/metabolism ; Homeodomain Proteins/genetics/*metabolism ; Humans ; Muscle Development ; MyoD Protein/metabolism ; Receptors, Notch/metabolism ; Recombinant Fusion Proteins/metabolism ; Repressor Proteins/genetics/*metabolism ; Rhabdomyosarcoma/metabolism/pathology ; Signal Transduction ; Transduction, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...